问题导读: 1.shuffle过程的划分? 2.shuffle的中间结果如何存储? 3.shuffle的数据如何拉取过来? Shuffle过程的划分 Spark的操作模型是基于RDD的,当调用RDD的reduceByKey.groupByKey等类似的操作的时候,就需要有shuffle了.再拿出reduceByKey这个来讲. def reduceByKey(func: (V, V) => V, numPartitions: Int): RDD[(K, V)] = { reduceByKey…
问题导读:spark缓存是如何实现的?BlockManager与BlockManagerMaster的关系是什么? 这个persist方法是在RDD里面的,所以我们直接打开RDD这个类. def persist(newLevel: StorageLevel): this.type = {   // StorageLevel不能随意更改   if (storageLevel != StorageLevel.NONE && newLevel != storageLevel) {     thr…
在上一篇文章中 Spark源码系列:DataFrame repartition.coalesce 对比 对DataFrame的repartition.coalesce进行了对比,在这篇文章中,将会对RDD的repartition.coalesce进行对比. RDD重新分区的手段与DataFrame类似,有repartition.coalesce两个方法 repartition def repartition(numPartitions: Int): JavaRDD[T] /** * Return…
Spark大会上,所有的演讲嘉宾都认为shuffle是最影响性能的地方,但是又无可奈何.之前去百度面试hadoop的时候,也被问到了这个问题,直接回答了不知道. 这篇文章主要是沿着下面几个问题来开展: 1.shuffle过程的划分? 2.shuffle的中间结果如何存储? 3.shuffle的数据如何拉取过来? Shuffle过程的划分 Spark的操作模型是基于RDD的,当调用RDD的reduceByKey.groupByKey等类似的操作的时候,就需要有shuffle了.再拿出reduceB…
Spark 大会上,所有的演讲嘉宾都认为 shuffle 是最影响性能的地方,但是又无可奈何.之前去百度面试 hadoop 的时候,也被问到了这个问题,直接回答了不知道. 这篇文章主要是沿着下面几个问题来开展: 1.shuffle 过程的划分? 2.shuffle 的中间结果如何存储? 3.shuffle 的数据如何拉取过来? Shuffle 过程的划分 Spark 的操作模型是基于 RDD 的,当调用 RDD 的 reduceByKey.groupByKey 等类似的操作的时候,就需要有 sh…
Spark源码分析 – SparkContext 中的例子, 只分析到sc.runJob 那么最终是怎么执行的? 通过DAGScheduler切分成Stage, 封装成taskset, 提交给TaskScheduler, 然后等待调度, 最终到Executor上执行 val sc = new SparkContext(--) val textFile = sc.textFile("README.md") textFile.filter(line => line.contains(…
前言 折腾了很久,终于开始学习Spark的源码了,第一篇我打算讲一下Spark作业的提交过程. 这个是Spark的App运行图,它通过一个Driver来和集群通信,集群负责作业的分配.今天我要讲的是如何创建这个Driver Program的过程. 作业提交方法以及参数 我们先看一下用Spark Submit提交的方法吧,下面是从官方上面摘抄的内容. # Run on a Spark standalone cluster ./bin/spark-submit \ --class org.apach…
好久没更新博客了,之前学了一些R语言和机器学习的内容,做了一些笔记,之后也会放到博客上面来给大家共享.一个月前就打算更新Spark Sql的内容了,因为一些别的事情耽误了,今天就简单写点,Spark1.2马上就要出来了,不知道变动会不会很大,据说添加了很多的新功能呢,期待中... 首先声明一下这个版本的代码是1.1的,之前讲的都是1.0的. Spark支持两种模式,一种是在spark里面直接写sql,可以通过sql来查询对象,类似.net的LINQ一样,另外一种支持hive的HQL.不管是哪种方…
作业执行 上一章讲了RDD的转换,但是没讲作业的运行,它和Driver Program的关系是啥,和RDD的关系是啥? 官方给的例子里面,一执行collect方法就能出结果,那我们就从collect开始看吧,进入RDD,找到collect方法. def collect(): Array[T] = { val results = sc.runJob(this, (iter: Iterator[T]) => iter.toArray) Array.concat(results: _*) } 它进行了…
这一章想讲一下Spark的缓存是如何实现的.这个persist方法是在RDD里面的,所以我们直接打开RDD这个类. def persist(newLevel: StorageLevel): this.type = { // StorageLevel不能随意更改 if (storageLevel != StorageLevel.NONE && newLevel != storageLevel) { throw new UnsupportedOperationException("C…