这个函数是我无意中看到的很不错,很给力,我喜欢 是用于求最小公约数的 简单的描述就是,记gcd(a,b)表示非负整数a,b的最大公因数,那么:gcd(a,b)=gcd(b,a%b)或者gcd(a,0)=gcd(0,a)=a 请看代码 int gcd(int a,int b){ if(a==0) return b; if(b==0) return a; return gcd(b,a%b);} 例题 链接 http://acm.hdu.edu.cn/showproblem.php?pid=1108…
求最大公约数哪个强,果断GCD,非递归版本和递归版本如下: #include<iostream> using namespace std; int gcd(int a, int b){ //非递归版本 int big = max(a, b); int small = min(a, b); int temp; while(small != 0 ){ temp = big % small; big = small; small = temp; } return big; } int gcd_(in…
package Basic; import java.util.Scanner; public class Gcd { public static void main(String[] args) { Scanner scanner=new Scanner(System.in); int num_1=scanner.nextInt(); int num_2=scanner.nextInt(); if(num_1>num_2){ System.out.println(gcd(num_1, num_…
求最小公约数,最easy想到的是欧几里得算法,这个算法也是比較easy理解的,效率也是非常不错的. 也叫做辗转相除法. 对随意两个数a.b(a>b).d=gcd(a.b),假设b不为零.那么gcd(a,b)=gcd(b.a%b) 证明: 令 r=a%b,即存在k,使得 a=b*k+r,那么r=a-b*k:显然r>=0,  r%d=((a%d)-(b*k)%d)%d.由于a%d=b%d=0,所以r%d=0: 因此求gcd(a,b)能够转移到求gcd(b,a%b).那么这就是个递归过程了.那什么时…
一.欧几里得算法及其证明 1.定义: 欧几里得算法又称辗转相除法,用于求两数的最大公约数,计算公式为GCD(a,b)=GCD(b,a%b): 2.证明: 设x为两整数a,b(a>=b)的最大公约数,那么x|a,x|b; ①由整数除法具有传递性(若x能整除a,x能整除b,那么x可整除a,b的任意线性组合)知x|a-b; ②设x不是b的因子,则x不是b和a-b的公因子:设x不是a的因子,则x不是b和a-b的公因子:所以可以得出GCD(a,b)=GCD(b,a-b); ③由a>=b知,a可表示为a=…
关于欧几里得算法求最大公约数算法, 代码如下: int gcd( int a , int b ) { if( b == 0 ) return a ; else gcd( b , a % b ) ; } 证明: 对于a,b,有a = kb + r  (a , k , b , r 均为整数),其中r = a mod b . 令d为a和b的一个公约数,则d|a,d|b(即a.b都被d整除), 那么 r =a - kb ,两边同时除以d 得 r/d = a/d - kb/d = m (m为整数,因为r也…
求GCD(最大公约数)的两种方式 这篇随笔讲解C++语言程序设计与应用中求GCD(最大公约数,下文使用GCD代替)的两种常用方式:更相减损法和辗转相除法,前提要求是具有小学数学的基本素养,知道GCD是什么,并具有C++的语法基础. 一.更相减损法 两个正整数a和b(a>b),它们的最大公约数等于a-b的差值c和较小数b的最大公约数. (这是我国人民智慧的结晶) 我来介绍一下这个算法的优点,就是避免了大整数取模导致效率低下,但是运算次数要比辗转相除多得多,所以我们在使用的时候需要判断一下. 代码:…
题目 3在十进制下满足若各位和能被3整除,则该数能被3整除. 5在十六进制下也满足此规律. 给定数字k,求多少进制(1e18进制范围内)下能满足此规律,找出一个即可,无则输出-1. 题解 写写画画能找到规律,即是求与k互质的数x,x进制下即能满足上述规律. 相关 求最大公约数:辗转相除法(又叫欧几里得算法) 欧几里德定理: gcd(a, b) = gcd(b , a mod b) ,对于正整数a.b. 其中a.b大小无所谓.当a值小于b值时,算法的下一次递归调用就能够将a和b的值交换过来. 代码…
要求最小公倍数可先求出最大公约数 设要求两个数a,b的最大公约数 伪代码: int yushu,a,b: while(b不等于0) { yushu=a对b求余 b的值赋给a yushu的值赋给b } 代码: int gongyue() { int yushu,a,b; while(b) { yushu=a%b; a=b; b=yushu; } return b; } 此子函数可以求出两个数的最大公约数n    最小公倍数为a*b/n:…
之前一直只知道欧几里得辗转相除法,今天学习了一下另外一种.在处理大数时更优秀的算法--Stein 特此记载 1.欧几里得(Euclid)算法 又称辗转相除法,依据定理gcd(a,b)=gcd(b,a%b) 实现过程演示: sample:gcd(15,10)=gcd(10,5)=gcd(5,0)=5 C语言实现: int Euclid_GCD(int a, int b) { return b?Euclid_GCD(b, a%b):a; } 2.Stein 算法 一般实际应用中的整数很少会超过64位…