约翰的奶牛们从小娇生惯养,她们无法容忍牛棚里的任何脏东西. 约翰发现,如果要使这群有洁癖的奶牛满意,他不得不雇佣她们中的一些来清扫牛棚, 约翰的奶牛中有N(1≤N≤10000)头愿意通过清扫牛棚来挣一些零花钱. 由于在某个时段中奶牛们会在牛棚里随时随地地乱扔垃圾,自然地,她们要求在这段时间里,无论什么时候至少要有一头奶牛正在打扫. 需要打扫的时段从某一天的第M秒开始,到第E秒结束f0≤M≤E≤86399).注意这里的秒是指时间段而不是时间点,也就是说,每天需要打扫的总时间是E-M+I秒.  约翰…
BZOJ_1672_[Usaco2005 Dec]Cleaning Shifts 清理牛棚_动态规划+线段树 题意:  约翰的奶牛们从小娇生惯养,她们无法容忍牛棚里的任何脏东西.约翰发现,如果要使这群有洁癖的奶牛满意,他不得不雇佣她们中的一些来清扫牛棚, 约翰的奶牛中有N(1≤N≤10000)头愿意通过清扫牛棚来挣一些零花钱.由于在某个时段中奶牛们会在牛棚里随时随地地乱扔垃圾,自然地,她们要求在这段时间里,无论什么时候至少要有一头奶牛正在打扫.需要打扫的时段从某一天的第M秒开始,到第E秒结束f0…
好久没碰到这么友好乱搞的题了.... A. 数列 考察的是exgcd的相关知识,最后的答案直接O(1)求即可 B. 数对 本来以为是原题,然后仔细看了看发现不是,发现不会只好乱搞骗分了 事实上直接按$a+b$为第一关键字,然后就是原题了..... C. 最小距离 事实上这道题的思路还是不错的,考场上联想树上直径问题于是想到了 观察数据范围,我们好像只能跑一遍最短路 那么如何在一遍中求出$p$个点的距离,可以记录一个$pre_{i},dis_{i}$分别表示i节点到任意源点的最短距离,和源点是谁…
[BZOJ3387][Usaco2004 Dec]Fence Obstacle Course栅栏行动 Description 约翰建造了N(1≤N≤50000)个栅栏来与牛同乐.第i个栅栏的z坐标为[Ai.,Bi](-100000≤Ai<Bi≤10^5),y坐标为i.牛棚的外栏即x轴,原点是牛棚的门.奶牛们开始处于(S,N),她们需要回到牛棚的门(下图中用“*’表示).    约翰的初衷是为了给奶牛们练习跳跃,但是奶牛们似乎更愿意四蹄着地,慢慢她沿着栅栏 走.当她们走到栅栏的尽头,就会朝着牛棚的…
(我恨字符串) 惯例化简题目:给定n个字符串,可以改变字符的相对大小(在字典序中的大小),问:字符串i是否能成为最小的字符串(字典序) 解题过程: 首先你可以预处理出来26的全排列然后暴力然后你只要用神威太湖之光开O2就能过了 秒切字典树 推出一堆没用的结论. 说一下思考过程:首先字典树能找前缀都知道吧 观察样例,得:对于不能变成第一的,那么一定是有一个跟它有相同前缀的字符串,但是不完全相等,要有比当前串小的. 然后和旁边大佬一起歪歪瞎搞:建立一棵字典树,然后对于每个字符串跑一遍字典树,如果能找…
题目描述 Farmer John为了保持奶牛们的健康,让可怜的奶牛们不停在牧场之间的小路上奔跑.这些奶牛的路径集合可以被表示成一个点集和一些连接 两个顶点的双向路,使得每对点之间恰好有一条简单路径. 简单的说来, 这些点的布局就是一棵树,且每条边等长,都为1. 对于给定的一个奶牛路径集合,精明的奶牛们会计算出任意点对路径的最大值, 我们称之为这个路径集合的直径.如果直径太大,奶牛们就会拒绝锻炼. Farmer John把每个点标记为1..V (2 <= V <= 100,000).为了获得更加…
题目描述 农场被划分为5x5的格子,每个格子中都有一头奶牛,并且只有荷斯坦(标记为H)和杰尔西(标记为J)两个品种. 如果一头奶牛在另一头上下左右四个格子中的任一格里,我们说它们相连. 奶牛要大选了.现在有一只杰尔西奶牛们想选择7头相连的奶牛,划成一个竞选区,使得其中它们品种的奶牛比荷斯坦的多.  要求你编写一个程序求出方案总数.  输入 输入5行农场的情况. 输出 输出1行,即划区方案总数. 样例输入 Copy HHHHH JHJHJ HHHHH HJHHJ HHHHH 样例输出 Copy 2…
题目链接 [洛谷] 题解 很明显是要用线段树合并的. 对于当前的每一个连通块都建立一个权值线段树. 权值线段树处理操作中的\(k\)大的问题. 如果需要合并,那么就线段树暴力合并,时间复杂度是\(nlogn\),均摊下来就是\(logn\). 判断联通性的问题就用并查集来解决. 如果在同一个联通块里,就不能合并,否则会出一点问题. 代码 #include <bits/stdc++.h> using namespace std; const int N = 3000000 + 6; int rt…
题目描述 给你一棵 $n$ 个点的树,边有边权.$m$ 次询问,每次给出 $l$ .$r$ .$x$ ,求 $\text{Min}_{i=l}^r\text{dis}(i,x)$ . $n,m\le 10^5$ . 题解 动态点分治+线段树 分块做法太傻逼了我们把它丢到垃圾桶里.树上距离考虑动态点分治. 求出这棵树的点分树,对每一棵点分树子树开一棵动态开点编号线段树,维护编号在某区间内的点到当前点距离的最大值. 对于一次查询,我们在点分树从 $x$ 到根的路径上所有点对应的线段树上查询 $[l,…
http://new.tyvj.cn/p/2065 我就不说我很sb的用线段树来维护值...... 本机自测的时候想了老半天没想出怎么维护点在所有区间被多少区间包含的方法.最后一小时才想出来线段树(果然太弱) .. 首先想到贪心,答案一定是某个区间的右端点...(这个很容易想也容易证,我就不说了.....) 然后按右端点排序 然后我维护了个左端点前缀和,将来枚举每一个右端点的时候所得到的答案就是sum[n]-sum[i]-he+ge*a[i].r he表示包含右端点的所有区间的左端点之和,ge表…