【资料收集】PCA降维】的更多相关文章

重点整理: PCA(Principal Components Analysis)即主成分分析,是图像处理中经常用到的降维方法 1.原始数据: 假定数据是二维的 x=[2.5, 0.5, 2.2, 1.9, 3.1, 2.3, 2, 1, 1.5, 1.1]T y=[2.4, 0.7, 2.9, 2.2, 3.0, 2.7, 1.6, 1.1, 1.6, 0.9]T 2.计算协方差矩阵 (1)协方差矩阵: 标准差和方差一般是用来描述一维数据的 协方差就是一种用来度量两个随机变量关系的统计量(协方差…
一步步教你轻松学主成分分析PCA降维算法 (白宁超 2018年10月22日10:14:18) 摘要:主成分分析(英语:Principal components analysis,PCA)是一种分析.简化数据集的技术.主成分分析经常用于减少数据集的维数,同时保持数据集中的对方差贡献最大的特征.常常应用在文本处理.人脸识别.图片识别.自然语言处理等领域.可以做在数据预处理阶段非常重要的一环,本文首先对基本概念进行介绍,然后给出PCA算法思想.流程.优缺点等等.最后通过一个综合案例去实现应用.(本文原…
转载地址:http://blog.csdn.net/watkinsong/article/details/38536463 1. 前言 PCA : principal component analysis ( 主成分分析) 最近发现我的一篇关于PCA算法总结以及个人理解的博客的访问量比较高, 刚好目前又重新学习了一下PCA (主成分分析) 降维算法, 所以打算把目前掌握的做个全面的整理总结, 能够对有需要的人有帮助. 自己再看自己写的那个关于PCA的博客, 发现还是比较混乱的, 希望这里能过做好…
前言 本文为模式识别系列第一篇,主要介绍主成分分析算法(Principal Component Analysis,PCA)的理论,并附上相关代码.全文主要分六个部分展开: 1)简单示例.通过简单的例子,引出PCA算法: 2)理论推导.主要介绍PCA算法的理论推导以及对应的数学含义: 3)算法步骤.主要介绍PCA算法的算法流程: 4)应用实例.针对PCA的实际应用,列出两个应用实例: 5)常见问题补充.对于数据预处理过程中常遇到的问题进行补充: 6)扩展阅读.简要介绍PCA的不足,并给出K-L变换…
http://blog.json.tw/using-matlab-implementing-pca-dimension-reduction 設有m筆資料, 每筆資料皆為n維, 如此可將他們視為一個mxn matrix.若資料的維度太大時, 可能不利於分析, 例如這m筆資料用作機器學習. PCA的想法是算出這mxn matrix的斜方差矩陣, 此矩陣大小為nxn, 計算此矩陣n個特徵值(eigen value)及其對應的特徵向量(eigen vector), 依eigen value大小由小到大排…
JDBC连接MySQL 方法 实例及资料收集 准备工作 首先,安装MySQL,配置用户名和密码,创建数据库. 可参见之前的文章: http://www.cnblogs.com/mengdd/p/3154638.html http://www.cnblogs.com/mengdd/p/3154922.html 准备驱动包 要用JDBC连接MySQL,需要一个驱动包: 可以去这里下载(其实完整安装MySQL后可以在安装路径中找到这个包): http://www.mysql.com/products/…
收集整理这份资料灵感来自于 trip_to_iOS, 征得同意引用了该资料的开头描述 收集整理这份资料主要帮助初学者学习 Android 开发, 希望能快速帮助到他们快速入门, 找到适合自己学习资料, 节省再去收集学习资料时间. 这份资料我会不断的更新完善, 同时也欢迎更多具有丰富经验的Android开发者将自己常用的工具.学习资料.学习心得等分享上来, 我将定期筛选合并, 该份学习资料有不足的地方, 也请指出, 我会谦虚接受改正, 希望我能与大家一起来学习, 谢谢. 感谢 @GitHubDai…
关于 Graph Convolutional Networks 资料收集 1.  GRAPH CONVOLUTIONAL NETWORKS   ------ THOMAS KIPF, 30 SEPTEMBER 2016 Link:http://tkipf.github.io/graph-convolutional-networks/#gcns-part-iii-embedding-the-karate-club-network 2.  Graph 卷积神经网络:概述.样例及最新进展    ---…
K-Means算法 非监督式学习对一组无标签的数据试图发现其内在的结构,主要用途包括: 市场划分(Market Segmentation) 社交网络分析(Social Network Analysis) 管理计算机集群(Organize Computer Clusters) 天文学数据分析(Astronomical Data Analysis) K-Means算法属于非监督式学习的一种,算法的输入是:训练数据集$\{x^{(1)},x^{(2)},\ldots, x^{(m)}\}$(其中$x^…
原地址:http://www.cnblogs.com/realtimepixels/p/3652075.html AssetBundle机制相关资料收集 最近网友通过网站搜索Unity3D在手机及其他平台下占用内存太大. 这里写下关于Unity3D对于内存的管理与优化. Unity3D 里有两种动态加载机制:一个是Resources.Load,另外一个通过AssetBundle,其实两者区别不大. Resources.Load就是从一个缺省打进程序包里的AssetBundle里加载资源,而一般A…