题目描述: 给定一个非空字符串 s 和一个包含非空单词列表的字典 wordDict,判定 s 是否可以被空格拆分为一个或多个在字典中出现的单词. 说明: 拆分时可以重复使用字典中的单词.你可以假设字典中没有重复的单词. 示例 1: 输入: s = "leetcode", wordDict = ["leet", "code"] 输出: true 解释: 返回 true 因为 "leetcode" 可以被拆分成 "lee…
题目描述: 给定正整数 n,找到若干个完全平方数(比如 1, 4, 9, 16, ...)使得它们的和等于 n.你需要让组成和的完全平方数的个数最少. 示例 1: 输入: n = 12 输出: 3 解释: 12 = 4 + 4 + 4. 示例 2: 输入: n = 13 输出: 2 解释: 13 = 4 + 9. 思路分析:思路: 动态规划首先初始化长度为n+1的数组dp,每个位置都为0如果n为0,则结果为0对数组进行遍历,下标为i,每次都将当前数字先更新为最大的结果,即dp[i]=i,比如i=…
139. 单词拆分 给定一个非空字符串 s 和一个包含非空单词列表的字典 wordDict,判定 s 是否可以被空格拆分为一个或多个在字典中出现的单词. 说明: 拆分时可以重复使用字典中的单词. 你可以假设字典中没有重复的单词. 示例 1: 输入: s = "leetcode", wordDict = ["leet", "code"] 输出: true 解释: 返回 true 因为 "leetcode" 可以被拆分成 &quo…
139. 单词拆分 139. Word Break…
单词拆分 给定一个非空字符串 s 和一个包含非空单词列表的字典 wordDict,判定 s 是否可以被空格拆分为一个或多个在字典中出现的单词. 说明: 拆分时可以重复使用字典中的单词. 你可以假设字典中没有重复的单词. class Solution { public boolean wordBreak(String s, List<String> wordDict) { int n=s.length(); boolean[] dp=new boolean[n+1]; dp[0]=true; f…
给定一个非空字符串 s 和一个包含非空单词列表的字典 wordDict,判定 s 是否可以被空格拆分为一个或多个在字典中出现的单词. 说明: 拆分时可以重复使用字典中的单词. 你可以假设字典中没有重复的单词. 示例 1: 输入: s = "leetcode", wordDict = ["leet", "code"] 输出: true 解释: 返回 true 因为 "leetcode" 可以被拆分成 "leet cod…
题目 给定一个非空字符串 s 和一个包含非空单词列表的字典 wordDict,判定 s 是否可以被空格拆分为一个或多个在字典中出现的单词. 说明: 拆分时可以重复使用字典中的单词. 你可以假设字典中没有重复的单词. 示例 1: 输入: s = "leetcode", wordDict = ["leet", "code"] 输出: true 解释: 返回 true 因为 "leetcode" 可以被拆分成 "leet…
一开始的错误答案与错误思路,幻想直接遍历得出答案: class Solution { public: bool wordBreak(string s, vector<string>& wordDict) { for(int i;i<s.size();i++){ ; for(int j;j<wordDict.size();j++){ if(s.substr(i,wordDict[j].size())==wordDict[j]){ step=wordDict[j].size()…
public boolean wordBreak(String s, List<String> wordDict) { if(s.length() == 0){ return false; } boolean right = false; StringBuilder str = new StringBuilder(); StringBuilder temp = new StringBuilder(); int j = 0; for(char i: s.toCharArray()){ str.a…
题目描述: 你是一个专业的小偷,计划偷窃沿街的房屋.每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警. 给定一个代表每个房屋存放金额的非负整数数组,计算你在不触动警报装置的情况下,能够偷窃到的最高金额. 示例 1: 输入: [1,2,3,1] 输出: 4 解释: 偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3).   偷窃到的最高金额 = 1 + 3 = 4 . 示例 2:…