原文 :https://medium.com/machine-learning-in-practice/roles-on-a-machine-learning-project-216903a6dc12 Machine learning is a technical process, but it starts and ends with people. The first step to structuring your machine learning project is to consid…
机器学习及其基础概念简介 作者:白宁超 2016年12月23日21:24:51 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结合视频学习和书籍基础的笔记所得.本系列文章将采用理论结合实践方式编写.首先介绍机器学习和深度学习的范畴,然后介绍关于训练集.测试集等介绍.接着分别介绍机器学习常用算法,分别是监督学习之分类(决策树.临近取样.支持向量机.神经网络算法)监督学习之回归(线性回归.非线性回归)非监督学习(K-means聚…
Teaching Your Computer To Play Super Mario Bros. – A Fork of the Google DeepMind Atari Machine Learning Project Posted by ehrenbrav on August 25, 2016Leave a comment (14)Go to comments   For those who want to get right to the good stuff, the installa…
Lecture17 Large Scale Machine Learning大规模机器学习 17.1 大型数据集的学习 Learning With Large Datasets 如果有一个低方差的模型, 通常通过增加数据集的规模,可以获得更好的结果. 但是如果数据集特别大,则首先应该检查这么大规模是否真的必要,也许只用 1000个训练集也能获得较好的效果,可以绘制学习曲线来帮助判断. 17.2 随机梯度下降法 Stochastic Gradient Descent 如果必须使用一个大规模的训练集…
本章通过一个例子,介绍机器学习的整个流程. 2.1 使用真实数据集练手(Working with Real Data) 国外一些获取数据的网站: Popular open data repositories: UC Irvine Machine Learning Repository Kaggle datasets Amazon's AWS datasets Meta portals (they list open data repositories): http://dataportals.o…
https://blog.csdn.net/luyao_cxy/article/details/82383091 转载:https://blog.csdn.net/qq_27297393/article/details/82284384 机器学习 一.人工智能.机器学习与深度学习 人工智能        机器学习               经典机器学习               基于神经网络的机器学习                      浅层学习                    …
绘制了一张导图,有不对的地方欢迎指正: 下载地址 机器学习中,特征是很关键的.其中包括,特征的提取和特征的选择.他们是降维的两种方法,但又有所不同: 特征抽取(Feature Extraction):Creatting a subset of new features by combinations of the exsiting features.也就是说,特征抽取后的新特征是原来特征的一个映射. 特征选择(Feature Selection):choosing a subset of all…
大家好,我是Mac Jiang,非常高兴您能在百忙之中阅读我的博客!这个专题我主要讲的是Coursera-台湾大学-機器學習基石(Machine Learning Foundations)的课后习题解答.笔者是在学习了Ng的Machine Learning之后開始学习这门课程的.但还是感觉收获颇丰.Ng的课程主要站在计算机专业的角度.教你怎样使用机器学习.注重方法而不是数学推导,是一门非常好的新手教程.而林轩田老师的机器学习基石是站在统计分析角度,证明机器学习算法为什么要这么做,更加注重于理论的…
the main steps: 1. look at the big picture 2. get the data 3. discover and visualize the data to gain insights 4. prepare the data for machine learning algorithms 5. select a model and train it 6. fine-tune your model 7. present your solution 8. laun…
今天和大家分享coursera-NTU-機器學習基石(Machine Learning Foundations)-作业三的习题解答.笔者在做这些题目时遇到非常多困难,当我在网上寻找答案时却找不到,而林老师又不提供答案,所以我就想把自己做题时对题目怎样思考的写下来,为大家提供一些思路.当然,我对题目的理解不一定是正确的,假设各位博友发现错误请及时留言联系.谢谢!再次提醒:请不要以此博客作为通过考试的用途,还是更好学习.理解课程的途径! 希望我的博客对您的学习有所帮助! 本文出处:http://bl…