1.问题描述 八皇后问题是一个以国际象棋为背景的问题:如何能够在 8×8 的国际象棋棋盘上放置八个皇后,使得任何一个皇后都无法直接吃掉其他的皇后?为了达到此目的,任两个皇后都不能处于同一条横行.纵行或斜线上.八皇后问题可以推广为更一般的n皇后摆放问题:这时棋盘的大小变为n×n,而皇后个数也变成n.当且仅当 n = 1 或 n ≥ 4 时问题有解. 2.思路分析   回溯法:当把问题分成若干步骤并递归求解时,如果当前步骤没有合法的选择时,则函数即调用上一层的递归,此即为回溯. 在每次的正向递归时是…
[八皇后问题] 问题: 国际象棋棋盘是8 * 8的方格,每个方格里放一个棋子.皇后这种棋子可以攻击同一行或者同一列或者斜线(左上左下右上右下四个方向)上的棋子.在一个棋盘上如果要放八个皇后,使得她们互相之间不能攻击(即任意两两之间都不同行不同列不同斜线),求出一种(进一步的,所有)布局方式. ■ 描述 & 实现 之前的Python基础那本书上介绍递归和生成器的一张有解过这个问题.书本中对于此问题的解可能更偏重于对于Python语言的应用.然而果然我也是早就忘光了.下面再来从头看看这个问题. 首先…
百度测试部2015年10月份的面试题之——八皇后. 八皇后问题的介绍在此.以下是用递归思想实现八皇后-N皇后. 代码如下: using System;using System.Collections.Generic; namespace QueensSolution { class Program { ; static void Main(string[] args) { int n = Int32.Parse(Console.ReadLine()); List<int> queen = ne…
八皇后问题 一.题意解析 国际象棋中的皇后,可以横向.纵向.斜向移动.如何在一个8X8的棋盘上放置8个皇后,使得任意两个皇后都不在同一条横线.竖线.斜线方向上?八皇后问题是一个古老的问题,于1848年由一位国际象棋棋手提出:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行.同一列或同一斜线上,如何求解?以高斯为代表的许多数学家先后研究过这个问题.后来,当计算机问世,通过计算机程序的运算可以轻松解出这个问题. 二.如何解决八皇后问题? 所谓递归回溯,本质上是一种…
**算法提高 8皇后·改** 时间限制:1.0s 内存限制:256.0MB 提交此题 问题描述 规则同8皇后问题,但是棋盘上每格都有一个数字,要求八皇后所在格子数字之和最大. 输入格式 一个8*8的棋盘. 输出格式 所能得到的最大数字和 样例输入 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45…
0 # -*- coding: utf-8 -*- 1 import random #冲突检查,在定义state时,采用state来标志每个皇后的位置,其中索引用来表示横坐标,基对应的值表示纵坐标,例如: state[0]=3,表示该皇后位于第1行的第4列上 def conflict(state, nextX): nextY = len(state) for i in range(nextY): #如果下一个皇后的位置与当前的皇后位置相邻(包括上下,左右)或在同一对角线上,则说明有冲突,需要重新…
#include <bits/stdc++.h> using namespace std; const int maxn = 55; int ans=0; int vis_Q[maxn]; int book_col[maxn]; int n; bool judge(int r,int c)//能否放在r行c列判断 { if(book_col[c]==1) return false;//如果这列已经被占用,不行 for(int i=1;i<r;i++) { if(abs(c-vis_Q[i…
n皇后问题:输入整数n, 要求n个国际象棋的皇后,摆在n*n的棋盘上,互相不能攻击,输出全部方案. 代码如下: #include <iostream> #include<cmath> using namespace std; ]; void NQueen(int n,int N); int main() { int N; cout<<"请输入N的值:"; cin>>N; NQueen(,N); ; } void NQueen(int n,…
#include <stdio.h> #define N 4 int solution[N], j, k, count, sols; int place(int row, int col) { for (j = 0; j <row; j++) { if (row - j == solution[row] - solution[j] || row + solution[row] == j + solution[j] || solution[j] == solution[row]) retu…
  算法训练 瓷砖铺放   时间限制:1.0s   内存限制:512.0MB     锦囊1 锦囊2 锦囊3 问题描述 有一长度为N(1<=N<=10)的地板,给定两种不同瓷砖:一种长度为1,另一种长度为2,数目不限.要将这个长度为N的地板铺满,一共有多少种不同的铺法? 例如,长度为4的地面一共有如下5种铺法: 4=1+1+1+1 4=2+1+1 4=1+2+1 4=1+1+2 4=2+2 编程用递归的方法求解上述问题. 输入格式 只有一个数N,代表地板的长度 输出格式 输出一个数,代表所有不…