pytorch的state_dict()拷贝问题】的更多相关文章

先说结论,model.state_dict()是浅拷贝,返回的参数仍然会随着网络的训练而变化.应该使用deepcopy(model.state_dict()),或将参数及时序列化到硬盘. 再讲故事,前几天在做一个模型的交叉验证训练时,通过model.state_dict()保存了每一组交叉验证模型的参数,后根据效果选择准确率最佳的模型load回去,结果每一次都是最后一个模型,从地址来看,每一个保存的state_dict()都具有不同的地址,但进一步发现state_dict()下的各个模型参数的地…
在 Pytorch 中一种模型保存和加载的方式如下: # save torch.save(model.state_dict(), PATH) # load model = MyModel(*args, **kwargs) model.load_state_dict(torch.load(PATH)) model.eval() model.state_dict()其实返回的是一个OrderDict,存储了网络结构的名字和对应的参数,下面看看源代码如何实现的. state_dict # torch.…
[源码解析] PyTorch 分布式(9) ----- DistributedDataParallel 之初始化 目录 [源码解析] PyTorch 分布式(9) ----- DistributedDataParallel 之初始化 0x00 摘要 0x01 综述 1.1 数据并行 1.2 DDP架构 1.2.1 分布式数据并行 1.2.2 进程 1.3 DDP 总体实现 0x02 初始化 2.1 __init__ 2.2 构建参数 2.2.1 _build_params_for_reducer…
[源码解析] PyTorch分布式优化器(1)----基石篇 目录 [源码解析] PyTorch分布式优化器(1)----基石篇 0x00 摘要 0x01 从问题出发 1.1 示例 1.2 问题点 0x01 模型构造 1.1 Module 1.2 成员变量 1.3 _parameters 1.3.1 构建 1.3.2 归类 1.3.3 获取 1.4 Linear 1.4.1 使用 1.4.2 定义 1.4.3 解释 0x02 Optimizer 基类 2.1 初始化 2.2 添加待优化变量 2.…
离线状态迁移Anaconda虚拟环境 同样是项目需求,需要布署的服务器上的Anaconda安装到了普通账户下 而后续所有的内容都需要通过root账户进行操作,而服务器已经布署,联网比较麻烦 本文提出,在无需联网的状态下,转移一下Anaconda的环境 1. 安装 Anaconda 所有的操作最好都用root账户进行 找到之前下载的Anaconda3-2019.10-Linux-x86_64.sh文件,最好移动到root目录下: 运行bash Anaconda3-2019.10-Linux-x86…
pytorch 中的 state_dict 是一个简单的python的字典对象,将每一层与它的对应参数建立映射关系.(如model的每一层的weights及偏置等等) (注意,只有那些参数可以训练的layer才会被保存到模型的state_dict中,如卷积层,线性层等等) 优化器对象Optimizer也有一个state_dict,它包含了优化器的状态以及被使用的超参数(如lr, momentum,weight_decay等) 备注: 1) state_dict是在定义了model或optimiz…
版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com 在模型训练时加上: model = nn.DataParallel(model)cudnn.benchmark = True可以加速训练速度.但是需要注意的是,训练后保存的模型参数在被加载到模型前,需要对模型加上: model = nn.DataParallel(model)cudnn.benchmark = True 否则加载时会出现错误:RuntimeError: Error(s) in loa…
参考https://github.com/chenyuntc/pytorch-book/tree/v1.0 希望大家直接到上面的网址去查看代码,下面是本人的笔记 本章介绍的nn模块是构建与autograd之上的神经网络模块 除了nn外还会介绍神经网络中常用的工具,比如优化器optim.初始化init等 1.nn.Module torch的核心数据结构是Module,它是一个抽象的概念,既可以表示神经网络中的某个层,也可以表示一个包含很多层的神经网络 在实际使用中,最常见的做法是继承nn.Modu…
参考:https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html 以下是两种主要的迁移学习场景 微调convnet : 与随机初始化不同,我们使用一个预训练的网络初始化网络,就像在imagenet 1000 dataset上训练的网络一样.其余的训练看起来和往常一样. 将ConvNet作为固定的特征提取器 : 在这里,我们将冻结所有网络的权重,除了最后的全连接层.最后一个完全连接的层被替换为一个具有随机权重的新层,…
预备知识 模型并行( model parallelism ):即把模型拆分放到不同的设备进行训练,分布式系统中的不同机器(GPU/CPU等)负责网络模型的不同部分 —— 例如,神经网络模型的不同网络层被分配到不同的机器,或者同一层内部的不同参数被分配到不同机器,如AlexNet的训练. 数据并行( data parallelism ):即把数据切分,输入到不同的机器有同一个模型的多个副本,每个机器分配到不同的数据,然后将所有机器的计算结果按照某种方式合并. 多进程最佳实践 torch.multi…