原文链接http://www.cnblogs.com/zhouzhendong/p/8810140.html 题目传送门 - BZOJ3160 题意 给你一个只含$a,b$的字符串,让你选择一个子序列,使得: $1.$位置和字符都关于某一条对称轴对称. $2.$不能是连续的一段. 问原来的字符串中能找出多少个这样的子序列.答案对$10^9+7$取模. 串长$\leq 10^5$. 题解 下面的讨论都在满足条件$1$的情况下进行. 首先,我们先不考虑条件$2$.然后再减掉不满足条件$2$的就可以了…
------------------------------------------本文只探讨多项式乘法(FFT)在信息学中的应用如有错误或不明欢迎指出或提问,在此不胜感激 多项式 1.系数表示法     一般应用最广泛的表示方式     用A(x)表示一个x-1次多项式,a[i]为$ x^i$的系数,则A(x)=$ \sum_0^{n-1}$ a[i] * $ x^i$ 仅利用这种方式求多项式乘法复杂度为O($ n^2$),不够优秀2.点值表示法     将n个互不相同的值$ x_0$...$…
3160: 万径人踪灭 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 133  Solved: 80[Submit][Status][Discuss] Description Input Output   Sample Input   Sample Output   HINT 以每一个位置为中心,分别处理连续一块的回文串,回文序列个数. 比较容易看出是FFT+manachar,但是FFT还是不太熟悉,特别要注意三层for语句中i,j,k不能写错,…
BZOJ传送门: 解题思路: FFT在处理卷积时可以将自己与自己卷,在某一种字母上标1其他标0,做字符集次就好了. (回文就是直接对称可以联系偶函数定义理解,根据这个性质就可以将字符串反向实现字符串匹配). 最后利用容斥回文字符2的次幂-回文串就好了. 回文串计数当然要回文自动机了. 代码: #include<cmath> #include<cstdio> #include<cstring> #include<algorithm> typedef long…
原文链接http://www.cnblogs.com/zhouzhendong/p/8798532.html 题目传送门 - BZOJ4259 题意 给你两个串,用其中一个来匹配另一个.问从母串的那些位置开始可以匹配模式串.注意有"*"可以匹配任何字符. 串长$\leq 3\times 10^5$. 题解 本题和BZOJ4503几乎一毛一样. 这里直接放BZOJ4503的传送门. http://www.cnblogs.com/zhouzhendong/p/8536065.html 但是…
容易想到先统计回文串数量,这样就去掉了不连续的限制,变为统计回文序列数量. 显然以某个位置为对称轴的回文序列数量就是2其两边(包括自身)对称相等的位置数量-1.对称有啥性质?位置和相等.这不就是卷积嘛.那么就做完了. 又写挂manacher,没救. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<…
Solution $ans=$回文子序列$-$回文子串的数目. 后者可以用$manacher$直接求. 前者设$f[i]$表示以$i$为中心的对称的字母对数. 那么回文子序列的数量也就是$\sum_{i=0}^{n-1}2^{f[i]-1}$ 构造两个数组$a[i],b[i]$.若第$i$位为$a$,那么$a[i]=1$,否则$b[i]=1$. 可以发现$a$数组自身卷积就是$a$字母对$f$数组的贡献,$b$数组同理. 卷下$a$,卷下$b$,对应位置求和,就是$f$数组. 因为在卷积中每对对…
题解 此题略神QAQ orz po神牛 由题我们知道我们要求出: 回文子序列数 - 连续回文子串数 我们记为ans1和ans2 ans2可以用马拉车轻松解出,这里就不赘述了 问题是ans1 我们设\(f[i]\)表示以i位置为中心的对称的字符对数,那么i位置产生的回文子序列数 = \(2^{f[i]} - 1\) 如何求? 由对称的性质,以i为对称中心的两点\(a,b\)满足\(a+b=2*i\) 我们可以设一个这样的序列: \(c[n]\)表示以\(n/2\)位置为对称点的对称点对数[n/2若…
万径人踪灭 bzoj-3160 题目大意:给定一个ab串.求所有的子序列满足:位置和字符都关于某条对称轴对称而且不连续. 注释:$1\le n\le 10^5$. 想法: 看了大爷的题解,OrzOrz. 因为对称轴可以是两个字符中间的位置,所以我们把字符串按照$Manacher$的形式倍增. 我们希望处理出一个数组$f$,$f_i$表示以$i$为对称轴的左右相等字符个数. 以当前位置为对称轴的答案显然就是$2^{f_i}-1$. 因为还有不连续的条件,我们只需要减掉$Manacher$的回文半径…
Description Input & Output & Sample Input & Sample Output HINT 题解: 题意即求不连续但间隔长度对称的回文串个数. 若si=sj,则这对字符可以作为以(i+j)/2为中心的回文串的一部分. 用F[i]来表示可以做为以i/2为中心的回文串的一部分的字符对数,则以i/2为中心的回文串数为2^F[i]. 则这就成了多项式乘法:先做一次a的,把字符为a的位置值赋为1,其余为0,进行一次FFT:同理做一次b的. 因为完全连续是不可…