近年提出的四个轻量化模型进行学习和对比,四个模型分别是:SqueezeNet.MobileNet.ShuffleNet.Xception. SqueezeNet https://arxiv.org/pdf/1602.07360.pdf MobileNet https://arxiv.org/pdf/1704.04861.pdf Xception https://arxiv.org/pdf/1610.02357.pdf ShuffleNet https://arxiv.org/pdf/1707.0…
本文是 Google 团队在 MobileNet 基础上提出的 MobileNetV2,其同样是一个轻量化卷积神经网络.目标主要是在提升现有算法的精度的同时也提升速度,以便加速深度网络在移动端的应用.…
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/37 本文地址:http://www.showmeai.tech/article-detail/269 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 前言 卷积神经网络的结构优化和深度加深,带来非常显著的图像识别效果提升,但同时也带来了高计算复杂度和更长的计算时间,实际工程应用中对效率的考虑也很多,研究界与工业界近年都在努力「保持效果的情况下压缩…
自 2012 年 AlexNet 以来,卷积神经网络在图像分类.目标检测.语义分割等领域获得广泛应用.随着性能要求越来越高,AlexNet 已经无法满足大家的需求,于是乎各路大牛纷纷提出性能更优越的 CNN 网络,如 VGG.GoogLeNet.ResNet.DenseNet 等.由于神经网络的性质,为了获得更好的性能,网络层数不断增加,从 7 层 AlexNet 到 16 层 VGG,再从 16 层 VGG 到 GoogLeNet 的 22 层,再到 152 层 ResNet,更有上千层的 R…
来一发普通的二维卷积 1.输入feature map的格式为:m * m * h1 2.卷积核为 k * k 3.输出feature map的格式为: n * n * h2 参数量:k * k * h1 * h2 计算量: k * k * h1 * n * n * h2 分组卷积 设分组大小为g,则: 参数量: (k * k * h1/g * h2 /g) * g 计算量:(k * k * h1/g n n * h2/g)*g squeezenet 单元名字为fire_module, 先用一个1…
完整代码及其数据,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/DeepLearningNote 这里结合网络的资料和MobileNet论文,捋一遍MobileNet,基本代码和图片都是来自网络,这里表示感谢,参考链接均在后文.下面开始. MobileNet论文写的很好,有想法的可以去看一下,我这里提供翻译地址: 深度学习论文翻译解析(十七):MobileNets: Efficient Convolutional Ne…
自 2012 年 AlexNet 以来,卷积神经网络在图像分类.目标检测.语义分割等领域获得广泛应用.随着性能要求越来越高,AlexNet 已经无法满足大家的需求,于是乎各路大牛纷纷提出性能更优越的 CNN 网络,如 VGG.GoogLeNet.ResNet.DenseNet 等.由于神经网络的性质,为了获得更好的性能,网络层数不断增加,从 7 层 AlexNet 到 16 层 VGG,再从 16 层 VGG 到 GoogLeNet 的 22 层,再到 152 层 ResNet,更有上千层的 R…
MobileNet v2 论文链接:https://arxiv.org/abs/1801.04381 MobileNet v2是对MobileNet v1的改进,也是一个轻量化模型. 关于MobileNet v1的介绍,请看这篇:对MobileNet网络结构的解读 MobileNet v1遗留下的问题 1)结构问题 MobileNet v1的结构非常简单,是一个直筒结构,这种结构的性价比其实不高,后续一系列的ResNet,DenseNet等结构已经证明通过复用图像特征,使用Concat/Eltw…
谷歌论文题目: MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications 其他参考: CNN模型之MobileNet Mobilenet网络的理解 轻量化网络:MobileNet-V2 Tensorflow实现参考: https://github.com/Zehaos/MobileNet 前言: 目前,CNN以及其他神经网络正在飞速发展与应用,为了追求高准确率,网络模型的深度和复杂度越来越…
导言 新的CNN网络的提出,提高了模型的学习能力但同时也带来了学习效率的降低的问题(主要体现在模型的存储问题和模型进行预测的速度问题),这使得模型的轻量化逐渐得到重视.轻量化模型设计主要思想在于设计更高效的"网络计算方式"(尤其针对卷积方式),从而不损失网络性能的前提下,减少网络计算的参数.本文主要介绍其中的一种--MobileNet[1](顾名思义,是能够在移动端使用的网络模型). 深度可分离卷积 MobileNet实现模型轻量化的核心是depth-wise separable co…