POJ 1458 Common Subsequence(LCS最长公共子序列)解题报告 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=87730#problem/F 题目: Common Subsequence Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 43388   Accepted: 17613 Description A subsequen…
虽然以前可能接触过最长公共子序列,但是正规的写应该还是第一次吧. 直接贴代码就好了吧: #include <stdio.h> #include <algorithm> #include <string.h> using namespace std; + ; char a[N],b[N]; int dp[N][N]; int main() { ,b+) == ) { ); ); memset(dp,,sizeof dp); ;i<=n;i++) { ;j<=m…
Common Subsequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 22698    Accepted Submission(s): 9967 Problem Description A subsequence of a given sequence is the given sequence with some el…
Common Subsequence A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a s…
Common Subsequence Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 43132   Accepted: 17472 Description A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..…
http://poj.org/problem?id=1458 用dp[i][j]表示处理到第1个字符的第i个,第二个字符的第j个时的最长LCS. 1.如果str[i] == sub[j],那么LCS长度就可以+1,是从dp[i - 1][j - 1] + 1,因为是同时捂住这两个相同的字符,看看前面的有多少匹配,+1后就是最大长度. 2.如果不同,那怎么办? 长度是肯定不能增加的了. 可以考虑下删除str[i] 就是dp[i - 1][j]是多少,因为可能i - 1匹配了第j个.也可能删除sub…
https://www.51nod.com/tutorial/course.html#!courseId=4 复杂度:${\rm O}(nm)$ 转移方程: #include<bits/stdc++.h> using namespace std; typedef long long ll; int n,m; ][]; ]; string s,t; int main(){ cin>>s>>t; n=s.size(); m=t.size(); ;i<n;i++){ ;…
LCS(Longest Common Subsequence),即最长公共子序列.一个序列,如果是两个或多个已知序列的子序列,且是所有子序列中最长的,则为最长公共子序列. 原理:    事实上,最长公共子序列问题也有最优子结构性质.然后,用动态规划的方法找到状态转换方程. 记:Xi=﹤x1,⋯,xi﹥即X序列的前i个字符 (1≤i≤m)(前缀) Yj=﹤y1,⋯,yj﹥即Y序列的前j个字符 (1≤j≤n)(前缀) 假定Z=﹤z1,⋯,zk﹥∈LCS(X , Y). 若xm=yn(最后一个字符相同…
题目传送门 题意:输出两字符串的最长公共子序列长度 分析:LCS(Longest Common Subsequence)裸题.状态转移方程:dp[i+1][j+1] = dp[i][j] + 1; (s[i] == t[i])dp[i+1][j+1] = max (dp[i][j+1], dp[i+1][j]); (s[i] != t[i]) 代码: #include <cstdio> #include <cstring> #include <iostream> #in…
出处 http://segmentfault.com/blog/exploring/ 本章讲解:1. LCS(最长公共子序列)O(n^2)的时间复杂度,O(n^2)的空间复杂度:2. 与之类似但不同的最长公共子串方法.最长公共子串用动态规划可实现O(n^2)的时间复杂度,O(n^2)的空间复杂度:还可以进一步优化,用后缀数组的方法优化成线性时间O(nlogn):空间也可以用其他方法优化成线性.3.LIS(最长递增序列)DP方法可实现O(n^2)的时间复杂度,进一步优化最佳可达到O(nlogn)…