excrt——cf687b】的更多相关文章

excrt的理解 问对于方程组x = ai % ci 的 通解 x+tM, (x+tM) % k 是否有唯一值 看tm%k是否==0即可 #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #include<queue> #include<vector> using namespace std; ; typedef long long LL…
X问题 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 8365    Accepted Submission(s): 3037 Problem Description 求在小于等于N的正整数中有多少个X满足:X mod a[0] = b[0], X mod a[1] = b[1], X mod a[2] = b[2], …, X mod…
蒟蒻maomao终于学会\(CRT\)啦!发一篇博客纪念一下(还有防止忘掉) \(CRT\)要解决的是这样一个问题: \[x≡a_1​(mod m_1​)\] \[x≡a_2​(mod m_2​)\] \[x≡a_3​(mod m_3​)\] \[...\] \[x≡a_k​(mod m_k​)​\] 其中,\(m\)之间两两互质.这个问题有一个通解是\(\sum a_i * M * t_i / m_i\),其中\(t_i\)代表方程\(M * t_i / m_i ≡ 1\)的最小正整数解. 为…
原文链接https://www.cnblogs.com/zhouzhendong/p/exCRT.html 扩展中国剩余定理 (exCRT) 的证明与练习 问题模型 给定同余方程组 $$\begin{cases}x&\equiv&x_1&\pmod {p_1}\\x&\equiv&x_2&\pmod {p_2}\\ &&\vdots\\x&\equiv&x_n&\pmod {p_n}\end{cases}$$ 求解 $…
P4777 [模板]扩展中国剩余定理(EXCRT) excrt模板 我们知道,crt无法处理模数不两两互质的情况 然鹅excrt可以 设当前解到第 i 个方程 设$M=\prod_{j=1}^{i-1}b[j]$ ,$ res$是前$ i-1 $个方程的最小解 则$ res+x*M$ 是前 $i-1 $个方程的通解 那么我们求的就是 $res+x*M ≡ a[i] (mod b[i])$ $<=> x*M - y*b[i] = a[i]-res$ 用exgcd求出的解为 t (当且仅当 gcd…
「NOI2018」屠龙勇士(EXCRT) 终于把传说中 \(NOI2018D2\) 的签到题写掉了... 开始我还没读懂题目...而且这题细节巨麻烦...(可能对我而言) 首先我们要转换一下,每次的 \(atk[i]\) 都可以用 \(multiset\) 找. 我们发现题目求的是 \(atk*x\equiv a_i(\text{mod}\ p_i)\),所以我们做一遍 \(exgcd\),求出同余方程. 然后就可以愉快的 \(EXCRT\) 了~ 不过发现一次要把龙的血量清零,所以一定要减到负…
传送门 原来NOI也会出裸题啊-- 用multiset求出对付每一个BOSS使用的武器威力\(ATK_i\),可以得到\(m\)个式子\(ATK_ix \equiv a_i \mod p_i\) 看起来可以直接魔改式子了-- 等一下!如果\(a_i > p_i\),\(ATK_ix<a_i\)没把BOSS打死怎么办QAQ 看数据范围,没有特性1(\(a_i \leq p_i\))的点似乎\(p_i=1\)?那不只要保证攻击次数能够把所有BOSS血量打到\(\leq 0\)就行了,,,于是这个顾…
前言: 中国剩余定理又名孙子定理.因孙子二字歧义,常以段子形式广泛流传. 中国剩余定理并不是很好理解,我也理解了很多次. CRT 中国剩余定理 中国剩余定理,就是一个解同余方程组的算法. 求满足n个条件的最小的x. 看起来很麻烦. 先找一个特殊情况:$m_1,m_2,...m_n$两两互质. 这个时候,构造$M=m_1*m_2*...m_n$; 令$M_i=M/m_i$; 所以,构造$n$个数,其中第$i$个数是除$i$之外的其他所有数的倍数,并且第$i$个数$mod m_i =1$ 即:$M_…
思路 中国剩余定理解决的是这样的问题 求x满足 \[ \begin{matrix}x \equiv a_1(mod\ m_1)\\x\equiv a_2(mod\ m_2)\\ \dots\\x\equiv a_n(mod\ m_n)\end{matrix} \] 在模数互质的情况下,解为 \[ x=\sum_ia_iM_iM_i^{-1}(mod M) \] 其中\(M=\prod_{i}m_i\),\(M_i=\frac{M}{m_i}\),\(M_i^{-1}\)为\(M_i\)在模\(m…
显然multiset求出每次用哪把剑.注意到除了p=1的情况,其他数据都保证了ai<pi,于是先特判一下p=1.比较坑的是还可能存在ai=pi,稍微考虑一下. 剩下的部分即解bix≡ai(mod pi)方程组.没有保证模数互质,于是excrt一发.excrt实际上就是不停exgcd合并两个方程. 这次是重开这题,调了半天还是一堆-1觉得这个题可能是搞不会了,最后才发现某个地方没开long long. #include<iostream> #include<cstdio> #i…