ACTIVE NEURAL LOCALIZATION】的更多相关文章

用贝叶斯滤波器定义状态,用rl帮助定位. 这个方法需要对地图和角度进行离散化,当地图很大,角度较精细时,输出会很大,所以不太可能用到大地图,高精度角度的任务上.…
Active Object Localization with Deep Reinforcement Learning ICCV 2015 最近Deep Reinforcement Learning算是火了一把,在Google Deep Mind的主页上,更是许多关于此的paper,基本都发在ICML,AAAI,IJCAI等各种人工智能,机器学习的牛会顶刊,甚至是Nature,可以参考其官方publication page: https://www.deepmind.com/publicatio…
Apparently, this ongoing work is to make a preparation for futural research on Deep Reinforcement Learning. The goal of this work is to build a simulation platform that can insert the Deep Reinforcement Learning algorithms as a robot motion planning…
      ICCV 2015:21篇最火爆研究论文 ICCV 2015: Twenty one hottest research papers   “Geometry vs Recognition” becomes ConvNet-for-X Computer Vision used to be cleanly separated into two schools: geometry and recognition. Geometric methods like structure from…
论文地址:https://asa.scitation.org/doi/abs/10.1121/1.5036725 深度神经网络在浅水环境中的源定位 摘要: 深度神经网络(DNNs)在表征复杂的非线性关系方面具有优势.本文将DNNs应用于浅水环境下的源定位.提出了两种方法,通过不同的神经网络结构来估计宽带源的范围和深度.第一阶段采用经典的两阶段方案,特征提取和DNN分析是两个独立的步骤;与模态信号空间相关联的特征向量被提取为输入特征.然后,利用时滞神经网络对长期特征表示进行建模,构建回归模型;第二…
p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 } p.p2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #042eee } span.s1 { } span.s2 { text-decoration: underline } Is objec…
Abstract Input: A query image Source: A point cloud reconstruction of a large scene (有一百多万3D点) Result:pose 关键:an efficient and effective search method to establish matches between image features and scene points needed for pose estimation. 一个动态搜多额外匹配…
CNN综述文章 的翻译 [2019 CVPR] A Survey of the Recent Architectures of Deep Convolutional Neural Networks 翻译 综述深度卷积神经网络架构:从基本组件到结构创新 目录 摘要    1.引言    2.CNN基本组件        2.1 卷积层        2.2 池化层        2.3 激活函数        2.4 批次归一化        2.5 Dropout        2.6 全连接层…
XiangBai--[AAAI2017]TextBoxes:A Fast Text Detector with a Single Deep Neural Network 目录 作者和相关链接 方法概括 创新点和贡献 方法细节 实验结果 总结与收获点 作者和相关链接 作者 论文下载 廖明辉,石葆光, 白翔, 王兴刚 ,刘文予 代码下载 方法概括 文章核心: 改进版的SSD用来解决文字检测问题 端到端识别的pipeline: Step 1: 图像输入到修改版SSD网络中 + 非极大值抑制(NMS)→…
理论知识:Deep learning:四十一(Dropout简单理解).深度学习(二十二)Dropout浅层理解与实现.“Improving neural networks by preventing co-adaptation of feature detectors” 感觉没什么好说的了,该说的在引用的这两篇博客里已经说得很清楚了,直接做试验吧 注意: 1.在模型的测试阶段,使用”mean network(均值网络)”来得到隐含层的输出,其实就是在网络前向传播到输出层前时隐含层节点的输出值都…