Tesseract-OCR 训练过程 V3.02】的更多相关文章

软件: jTessBoxEditor Version 0.9 (30 April 2013) Tesseract-OCR win32 v3.02 with Leptonica   训练步骤:   1.使用jTessBoxEditor,tools->merge_tif,产生tif文件 2.产生box文件 tesseract.exe eng.arial.01.tif eng.arial.01 batch.nochop makebox 3.使用jTessBoxEditor打开,Insert或Delet…
识别率有问题A大概率识别为n,因此需要训练,这里讲一下 如何训练 参考 java代码里边直接使用tess4j,是对tesseract的封装,但是如果要训练,还是需要在进行安装tesseract-ocr的 下载地址参考另一篇 然后还需要 下载jTessBoxEditorhttps://sourceforge.net/projects/vietocr/files/jTessBoxEditor/ 多搜集几张图片,进行二值化去噪点和裁切处理 双击运行 首先打开图片 全选图片,应该可以自动拼接为一个大的t…
tesseract ocr是一个开源的文字识别引擎,Android系统中也可以使用.可以识别50多种语言,通过自己训练识别库的方式,可以大大提高识别的准确率. 为了节省大家的学习时间,现将自己近期的学习总结成一个简单的实例程序,作为Android系统中使用tesseract的Demo演示并附有详细的说明文档.并将自己用C#开发的识别库训练工具提供给大家,其中包括全部的源代码.这样,大家就可以方便的训练特定字体和字形的识别库了. 经过训练后的纸牌识别,识别率达到了100% 注意“王”我在训练时,故…
Tesseract Ocr引擎 1.Tesseract介绍 tesseract 是一个google支持的开源ocr项目,其项目地址:https://github.com/tesseract-ocr/tesseract,目前最新的源码可以在这里下载. 实际使用tesseract ocr也有两种方式:1- 动态库方式 libtesseract  2  - 执行程序方式 tesseract.exe 由于本人也是python菜鸟一个,所以方式1暂时不会,只好采取方式2. 2.Tesseract安装包下载…
Tessseract为一款开源.免费的OCR引擎,能够支持中文十分难得.虽然其识别效果不是很理想,但是对于要求不高的中小型项目来说,已经足够用了. 文字识别可应用于许多领域,如阅读.翻译.文献资料的检索.信件和包裹的分拣.稿件的编辑和校对.大量统计报表和卡片的汇总与分析.银行支票的处理.商品发票的统计汇总.商品编码的识别.商品仓库的管理,以及水.电.煤气.房租.人身保险等费用的征收业务中的大量信用卡片的自动处理和办公室打字员工作的局部自动化等.以及文档检索,各类证件识别,方便用户快速录入信息,提…
1.Tesseract介绍 tesseract 是一个google支持的开源ocr项目,其项目地址:https://github.com/tesseract-ocr/tesseract,目前最新的源码可以在这里下载. 实际使用tesseract ocr也有两种方式:1- 动态库方式 libtesseract  2  - 执行程序方式 tesseract.exe 由于本人也是python菜鸟一个,所以方式1暂时不会,只好采取方式2. 2.Tesseract安装包下载 Tesseract的relea…
#Tesseract OCR使用介绍 ##目录[TOC] ##下载地址及介绍 官网介绍:http://code.google.com/p/tesseract-ocr/wiki/TrainingTesseract3 Github源码连接: https://github.com/tesseract-ocr 开源贡献者主页 https://kevintechnology.com/ ##安装 Tesseract 语言包查看 https://www.macports.org/ports.php?by=na…
Tesseract——OCR图像识别 入门篇 最近给了我一个任务,让我研究图像识别,从我们项目的screenshot中识别文字信息,so我开始了学习,与大家分享下. 我看到目前OCR技术有很多,最主要的是Asprise OCR,Tesseract OCR和Java OCR. Asprise OCR速度很快,Java实现很简单,但是它是商业的,要收费的,免费版每次都要弹出对话框,是个很麻烦的事情. Tesseract OCR是C++的,要使用cmd命令的,速度也很快,质量也很好.当然Java也是可…
一.强分类器训练过程 算法原理如下(参考自VIOLA P, JONES M. Robust real time object detection[A] . 8th IEEE International Conference on Computer Vision[C] . Vancouver , 2001.) 给定样本 (x1; y1) , . . . , (xn; yn) ; 其中yi = 0表示负样本,yi =1表示正样本: 初始化权重:负样本权重W0i= 1/2m, 正样本权重W1i = 1…
tesseract 字体训练资料篇 1.制作.box档案文件. tesseract [lang].[fontname].exp[num].tif [lang].[fontname].exp[num] -l yournewlanguage batch.nochop makebox 2.开始培训 tesseract [lang].[fontname].exp[num].tif [lang].[fontname].exp[num] box.train 或 tesseract [lang].[fontn…
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/6221622.html 参考网址: http://ju.outofmemory.cn/entry/284587 https://github.com/torch/nn/blob/master/doc/criterion.md 假设已经有了model=setupmodel(自己建立的模型),同时也有自己的训练数据input,实际输出outReal,以及损失函数criterion(参见第二个网址),则使用…
转自:http://blog.csdn.net/u013078356/article/details/51154847 在caffe的训练过程中,大家难免想图形化自己的训练数据,以便更好的展示结果.如 果自己写代码记录训练过程的数据,那就太麻烦了,caffe中其实已经自带了这样的小工具 caffe-master/tools/extra/parse_log.sh  caffe-master/tools/extra/extract_seconds.py和 caffe-master/tools/ext…
这里介绍一种深度残差网(deep residual networks)的训练过程: 1.通过下面的地址下载基于python的训练代码: https://github.com/dnlcrl/deep-residual-networks-pyfunt 2.这些训练代码需要和pydataset包.下面介绍这两个包的安装方法. (1)pyfunt需要安装. 用命令:pip install git+git://github.com/dnlcrl/PyFunt.git  进行下载安计.        安装时…
mxnet的训练过程--从python到C++ mxnet(github-mxnet)的python接口相当完善,我们可以完全不看C++的代码就能直接训练模型,如果我们要学习它的C++的代码,从python训练与预测的模型中可以看到C++的代码是怎么被调用的.上一篇博客中,我已经说明了mshadow的工作原理--mshadow的原理--MXNet:在这一篇中,来说明一下mxnet的训练过程,看python是调用发哪些C++的接口,但对C++接口的更进一步解释并没有很详细,具体可以自己看源码,后面…
安装环境:Ubuntu14.04.显卡Tesla K40C+GeForce GT 705.tensorflow1.0.0.pycharm5.0 说明:原文见博客园,有问题原文下留言,不定期回复.本文作者吴疆,转载请备注. 本文可解决的问题: 1.tensorflow1.0.0环境搭建 2.Ubuntu14.04安装pycharm5.0 3.Ubuntu14.04上跑通faster rcnn_TF的demo程序 4.Ubuntu14.04上跑通faster rcnn_TF的训练过程 安装步骤如下:…
线性回归模型 "回归"这个词,既是Regression算法的名称,也代表了不同的计算结果.当然结果也是由算法决定的. 不同于前面讲过的多个分类算法或者逻辑回归,线性回归模型的结果是一个连续的值. 实际上我们第一篇的房价预测就属于线性回归算法,如果把这个模型用于预测,结果是一个连续值而不是有限的分类. 从代码上讲,那个例子更多的是为了延续从TensorFlow 1.x而来的解题思路,我不想在这个系列的第一篇就给大家印象,TensorFlow 2.0成为了完全不同的另一个东西.在Tenso…
[Oracle RAC]Linux系统Oracle11gR2 RAC安装配置详细过程V3.1(图文并茂) 2 Oracle11gR2 RAC数据库安装准备工作2.1 安装环境介绍2.2 数据库安装软件下载3 Oracle11gR2 RAC数据库安装环境配置3.1 安装主机或虚拟机3.2 安装操作系统3.3 hosts文件配置3.4 添加组与用户3.5 添加文件系统3.6 修改操作系统参数3.7 禁止NTP3.8 配置grid和oracle用户的环境变量3.9 配置SSH信任关系3.10 调整页面…
打开Python Shell,执行以下代码: import tensorflow as tf import numpy as np #输入数据 x_data = np.linspace(-1,1,300)[:, np.newaxis] noise = np.random.normal(0,0.05, x_data.shape) y_data = np.square(x_data)-0.5+noise #输入层 with tf.name_scope('input_layer'): #输入层.将这两…
深度学习是一个框架,包含多个重要算法: Convolutional Neural Networks(CNN)卷积神经网络 AutoEncoder自动编码器 Sparse Coding稀疏编码 Restricted Boltzmann Machine(RBM)限制波尔兹曼机 Deep Belief Networks(DBN)深信度网络 Recurrent neural Network(RNN)多层反馈循环神经网络神经网络 对于不同问题(图像,语音,文本),需要选用不同网络模型比如CNN RESNE…
我用的是faster-rcnn,在绘制训练过程的loss和accuracy曲线时候,抛出如下错误,在网上查找无数大牛博客后无果,自己稍微看了下代码,发现,extract_seconds.py文件的 get_start_time()函数在获取时间时候获取失败,因为if line.find('Solving') != -1:这个语句判断错误导致,具体解决办法: 将该函数改造成: def get_start_time(line_iterable, year):    """Find…
TensorBoard是TensorFlow下的一个可视化的工具,能够帮助研究者们可视化训练大规模神经网络过程中出现的复杂且不好理解的运算,展示训练过程中绘制的图像.网络结构等. 最近本人在学习这方面的内容,然而出现了一些问题,我的问题是在完成相应代码准备好可视化数据后无法启动tensorboard,如下是网上找的测试可视化的代码(至于如何准备可视化数据这里不做介绍,看参见:(英文)https://www.tensorflow.org/get_started/summaries_and_tens…
一:适用范围: tf.nn.dropout是TensorFlow里面为了防止或减轻过拟合而使用的函数,它一般用在全连接层 二:原理: dropout就是在不同的训练过程中随机扔掉一部分神经元.也就是让某个神经元的激活值以一定的概率p,让其停止工作,这次训练过程中不更新权值,也不参加神经网络的计算.但是它的权重得保留下来(只是暂时不更新而已),因为下次样本输入时它可能又得工作了 三:函数介绍: tf.nn.drop(x,  keep_prob, noise_shape=None, seed=Non…
tensorflow笔记系列: (一) tensorflow笔记:流程,概念和简单代码注释 (二) tensorflow笔记:多层CNN代码分析 (三) tensorflow笔记:多层LSTM代码分析 (四) tensorflow笔记:常用函数说明 (五) tensorflow笔记:模型的保存与训练过程可视化 (六)tensorflow笔记:使用tf来实现word2vec 保存与读取模型 在使用tf来训练模型的时候,难免会出现中断的情况.这时候自然就希望能够将辛辛苦苦得到的中间参数保留下来,不然…
本节主要介绍的是libFM源码分析的第四部分--libFM的训练. FM模型的训练是FM模型的核心的部分. 4.1.libFM中训练过程的实现 在FM模型的训练过程中,libFM源码中共提供了四种训练的方法,分别为:Stochastic Gradient Descent(SGD),Adaptive SGD(ASGD),Alternating Least Squares(ALS)和Markov Chain Monte Carlo(MCMC),其中ALS是MCMC的特殊形式,实际上其实现的就是SGD…
最近有人问起在YOLOv2训练过程中输出在终端的不同的参数分别代表什么含义,如何去理解这些参数?本篇文章中我将尝试着去回答这个有趣的问题. 刚好现在我正在训练一个YOLOv2模型,拿这个真实的例子来讨论再合适不过了,下边是我训练中使用的 .cfg 文件(你可以在cfg文件夹下找到它): 以下是训练过程中终端输出的一个截图: 以上截图显示了所有训练图片的一个批次(batch),批次大小的划分根据我们在 .cfg 文件中设置的subdivisions参数.在我使用的 .cfg 文件中 batch =…
罪魁祸首是训练过程中给模型传值时的如下语句:…
原英文地址: https://timebutt.github.io/static/understanding-yolov2-training-output/ 最近有人问起在YOLOv2训练过程中输出在终端的不同的参数分别代表什么含义,如何去理解这些参数?本篇文章中我将尝试着去回答这个有趣的问题. 刚好现在我正在训练一个YOLOv2模型,拿这个真实的例子来讨论再合适不过了,下边是我训练中使用的 .cfg 文件(你可以在cfg文件夹下找到它): 以下是训练过程中终端输出的一个截图: 以上截图显示了所…
一.前言 在深度学习模型训练的过程中,常常需要实时监听并可视化一些数据,如损失值loss,正确率acc等.在Tensorflow中,最常使用的工具非Tensorboard莫属:在Pytorch中,也有类似的TensorboardX,但据说其在张量数据加载的效率方面不如visdom.visdom是FaceBook开发的一款可视化工具,其实质是一款在网页端的web服务器,对Pytorch的支持较好. 二.安装和启动 visdom的安装比较简单,可以直接使用pip命令. # visdom 安装指令 p…
不多说,直接上干货! 五.Deep Learning的基本思想 假设我们有一个系统S,它有n层(S1,…Sn),它的输入是I,输出是O,形象地表示为: I =>S1=>S2=>…..=>Sn => O,如果输出O等于输入I,即输入I经过这个系统变化之后没有任何的信息损失(呵呵,大牛说,这是不可能的.信息论中有个“信息逐层丢失”的说法(信息处理不等式),设处理a信息得到b,再对b处理得到c,那么可以证明:a和c的互信息不会超过a和b的互信息.这表明信息处理不会增加信息,大部分处…
交叉熵代价函数 machine learning算法中用得很多的交叉熵代价函数. 1.从方差代价函数说起 代价函数经常用方差代价函数(即采用均方误差MSE),比如对于一个神经元(单输入单输出,sigmoid函数),定义其代价函数为: 其中y是我们期望的输出,a为神经元的实际输出[ a=σ(z), where z=wx+b ]. 在训练神经网络过程中,我们通过梯度下降算法来更新w和b,因此需要计算代价函数对w和b的导数: 然后更新w.b: w <—— w - η* ∂C/∂w = w - η *…