Spark 源码分析 -- RDD】的更多相关文章

关于RDD, 详细可以参考Spark的论文, 下面看下源码 A Resilient Distributed Dataset (RDD), the basic abstraction in Spark. Represents an immutable, partitioned collection of elements that can be operated on in parallel. * Internally, each RDD is characterized by five main…
http://jerryshao.me/categories.html#architecture-ref http://blog.csdn.net/pelick/article/details/17222873 如果想了解Spark的设计, 第一个足够 如果想梳理Spark的源码整体结构, 第二个也可以  ALL Spark源码分析 – SparkContext Spark源码分析 – SparkEnv  Spark 源码分析 -- task实际执行过程   DAGScheduler Spark…
Dependency 依赖, 用于表示RDD之间的因果关系, 一个dependency表示一个parent rdd, 所以在RDD中使用Seq[Dependency[_]]来表示所有的依赖关系 Dependency的base class 可见Dependency唯一的成员就是rdd, 即所依赖的rdd, 或parent rdd /** * Base class for dependencies. */ abstract class Dependency[T](val rdd: RDD[T]) e…
原文链接:Spark源码分析:多种部署方式之间的区别与联系(1) 从官方的文档我们可以知道,Spark的部署方式有很多种:local.Standalone.Mesos.YARN.....不同部署方式的后台处理进程是不一样的,但是如果我们从代码的角度来看,其实流程都差不多. 从代码中,我们可以得知其实Spark的部署方式其实比官方文档中介绍的还要多,这里我来列举一下: 1.local:这种方式是在本地启动一个线程来运行作业: 2.local[N]:也是本地模式,但是启动了N个线程: 3.local…
Spark源码分析 – SparkContext 中的例子, 只分析到sc.runJob 那么最终是怎么执行的? 通过DAGScheduler切分成Stage, 封装成taskset, 提交给TaskScheduler, 然后等待调度, 最终到Executor上执行 val sc = new SparkContext(--) val textFile = sc.textFile("README.md") textFile.filter(line => line.contains(…
参考详细探究Spark的shuffle实现, 写的很清楚, 当前设计的来龙去脉 Hadoop Hadoop的思路是, 在mapper端每次当memory buffer中的数据快满的时候, 先将memory中的数据, 按partition进行划分, 然后各自存成小文件, 这样当buffer不断的spill的时候, 就会产生大量的小文件 所以Hadoop后面直到reduce之前做的所有的事情其实就是不断的merge, 基于文件的多路并归排序, 在map端的将相同partition的merge到一起,…
参考, Spark源码分析之-Storage模块 对于storage, 为何Spark需要storage模块?为了cache RDD Spark的特点就是可以将RDD cache在memory或disk中,RDD是由partitions组成的,对应于block 所以storage模块,就是要实现RDD在memory和disk上的persistent功能 首先每个节点都有一个BlockManager, 其中有一个是Driver(master), 其余的都是slave master负责track所有…
DAGScheduler的架构其实非常简单, 1. eventQueue, 所有需要DAGScheduler处理的事情都需要往eventQueue中发送event 2. eventLoop Thread, 会不断的从eventQueue中获取event并处理 3. 实现TaskSchedulerListener, 并注册到TaskScheduler中, 这样TaskScheduler可以随时调用TaskSchedulerListener中的接口报告状况变更 TaskSchedulerListen…
Spark源码分析之-scheduler模块 这位写的非常好, 让我对Spark的源码分析, 变的轻松了许多 这里自己再梳理一遍 先看一个简单的spark操作, val sc = new SparkContext(--)val textFile = sc.textFile("README.md") textFile.filter(line => line.contains("Spark")).count()   1. SparkContext 这是Spark的…
在<Spark源码分析之七:Task运行(一)>一文中,我们详细叙述了Task运行的整体流程,最终Task被传输到Executor上,启动一个对应的TaskRunner线程,并且在线程池中被调度执行.继而,我们对TaskRunner的run()方法进行了详细的分析,总结出了其内Task执行的三个主要步骤: Step1:Task及其运行时需要的辅助对象构造,主要包括: 1.当前线程设置上下文类加载器: 2.获取序列化器ser: 3.更新任务状态TaskState: 4.计算垃圾回收时间: 5.反…