2669: [cqoi2012]局部极小值 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 774  Solved: 411[Submit][Status][Discuss] Description 有一个n行m列的整数矩阵,其中1到nm之间的每个整数恰好出现一次.如果一个格子比所有相邻格子(相邻是指有公共边或公共顶点)都小,我们说这个格子是局部极小值. 给出所有局部极小值的位置,你的任务是判断有多少个可能的矩阵. Input 输入第一行包含两个整数…
题目链接 P3160 [CQOI2012]局部极小值 双倍经验,双倍快乐 解题思路 存下来每个坑(极小值点)的位置,以这个序号进行状态压缩. 显然,\(4*7\)的数据范围让极小值点在8个以内(以下示意) X . X . X . X . . . . . . . . . X . X . X . X . . . . . . . . . 所以考虑用\(S\)表示各个极小值点是否已填的状态,枚举\(1-n*m\)进行状压\(DP\). 当前填的数有两种选择: (\(1\))填入坑中,这样枚举\(S\)状…
发现最多有8个限制位置,可以以此为基础DP和容斥. $f_{i,j}=f_{i-1,j}\times (cnt_j-i+1)+\sum_{k\subset j} f_{i-1,k}$ $cnt_j$表示当限制状态为j时i有多少个可行位置. 这样DP只能保证所有题设位置全部是局部最小值,但不保证其它位置不会变成局部最小值,容斥解决. $O(DFS*8nm*2^8)$ #include<cstdio> #include<cstring> #include<algorithm>…
LINK:Dark Horse 首先考虑1所在位置. 假设1所在位置在1号点 对于此时剩下的其他点的方案来说. 把1移到另外一个点 对于刚才的所有方案来说 相对位置不变是另外的方案. 可以得到 1在任何位置剩下的方案数都相同 所以不妨设1所在点为1 求出方案乘以n. 考虑怎么求方案 即求出剩下的n-1个区间 且每个区间的最小值都不能是给出的m的值. 直接做需要状压 做不了. 考虑容斥 容易想到答案为\(\sum_{s}(-1)^{|s|}f_s\) 其中\(f_s\)表示集合s一定不合法的方案数…
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=3812 题解 考虑对于图的联通性的 DP 的一般套路:总方案 - 不连通的方案. 那么我们只需要求出使得整个图不强联通的方案数即可. 假设我们钦定了一个 \(p\) 点,然后通过枚举包含 \(p\) 点的强连通分量来转移.但是会遇到一些问题:不像无向图,无向图的不连通只需要保证没有边相连就可以了,但是有向图不行. 有向图一定可以被缩点成一个 DAG,然后 \(p\) 点所在的连通块可能会连入边…
题意 https://www.cometoj.com/contest/52/problem/C?problem_id=2416 思路 这里提供一种容斥的写法(?好像网上没看到这种写法) 题目要求编号为 \(i\) 的节点不能放在 \(p_i\) 位置,那我们不妨假设没有这些条件,然后再用二进制容斥的方法减去不满足条件的情况(即固定某些 \(i\) 在 \(p_i\) 上,这样会好考虑问题一点). 然后我们面临的问题就是,计算 \(A\)(二进制)这些数不能选,\(B\)(二进制)这些位置不能填的…
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ2669 题意概括 有一个n行m列的整数矩阵,其中1到nm之间的每个整数恰好出现一次.如果一个格子比所有相邻格子(相邻是指有公共边或公共顶点)都小,我们说这个格子是局部极小值. 给出所有局部极小值的位置,你的任务是判断有多少个可能的矩阵. 几组例子: 1.in 1.out 1 3 .X. 2 2.in 2.out 2 2 X. .X 0 3.in 3.out 3 2 X. .. .X 60 4.in…
题目描述 有一个n行m列的整数矩阵,其中1到nm之间的每个整数恰好出现一次.如果一个格子比所有相邻格子(相邻是指有公共边或公共顶点)都小,我们说这个格子是局部极小值. 给出所有局部极小值的位置,你的任务是判断有多少个可能的矩阵. 输入 输入第一行包含两个整数n和m(1<=n<=4, 1<=m<=7),即行数和列数.以下n行每行m个字符,其中“X”表示局部极小值,“.”表示非局部极小值. 输出 输出仅一行,为可能的矩阵总数除以12345678的余数. 样例输入 3 2 X. .. .…
正解:状压$dp$ 解题报告: 传送门! 什么神仙题昂,,,反正我是没有想到$dp$的呢$kk$,,,还是太菜了$QAQ$ 首先看数据范围,一个4×7的方格,不难想到最多有8个局部极小值,过于显然懒得证了$QwQ$ 然后因为它对相对位置大小有要求,于是考虑按大小顺序枚举 这里考虑从小到大枚举好了$QwQ$ 设$f_{i,j}:$枚举到第$i$个数,局部极小值的状态为$j$的方案数 转移显然就两种 第一种是,放到局部极小值的位置,有$f_{i,j+2^{k}}+=f_{i-1,j}$ 第二种是,不…
题意:给定n,m的矩阵,就是求稳定的骨牌完美覆盖,也就是相邻的两行或者两列都至少有一个骨牌 分析:第一步: 如果是单单求骨牌完美覆盖,请先去学基础的插头dp(其实也是基础的状压dp)骨牌覆盖 hihocoder有全套课程:骨牌覆盖(一, 二,三),状态压缩(二) 学好了以后,首先打一个预处理没有限制的表,由于赛后补题,我就没自己打,直接从网上粘的表 我的表来自:http://blog.csdn.net/u012015746/article/details/51971977 第二步: 这就是容斥的…