[LOJ#6259]「CodePlus 2017 12 月赛」白金元首与独舞 试题描述 到河北省 见斯大林 / 在月光下 你的背影 / 让我们一起跳舞吧 うそだよ~ 河北省怎么可能有 Stalin. 可是-- 可是如果 Stalin 把自己当作炸弹扔到地堡花园里来了呢? 怀揣着这份小小的希望,元首 Adolf 独自走进了花园.终有一天会重逢的吧,Stalin.或许是在此处,或许是在遥远的彼方. 无论如何,在此之前,好好装点一番花园,编排一段优美的舞步吧! 元首把花园分为 \(n\) 行 \(m\…
[题目]给定n行m列的矩阵,每个位置有一个指示方向(上下左右)或没有指示方向(任意选择),要求给未定格(没有指示方向的位置)确定方向,使得从任意一个开始走都可以都出矩阵,求方案数.n,m<=200,k<=300(未定格数量). [算法]生成树计数(矩阵树定理) [题解]先对定向格DFS找环判断是否无解. 然后每个点向指示方向连边,未定格向四周连边,外界作为一个点. 将所有有向边反向后,就是求根为外界的树形图的数量,生成树计数问题用矩阵树定理解决. 复杂度T*O((n*m)^3). 考虑优化,发…
description 题面 data range \[ 1 \leq T \leq 10, 1 \leq n, m \leq 200 , 0 \leq k \leq \min(nm, 300)\] solution 矩阵树定理 求无向图的生成树个数 度数矩阵-邻接矩阵 去掉一行一列求行列式 为了保证精度可以辗转相除 这里是模意义下的 const int mod=998244353; int a[305][305]; il int gauss(int n){ RG int ans=1; for(…
n,m<=200,n*m的方阵,有ULRD表示在这个格子时下一步要走到哪里,有一些待决策的格子用.表示,可以填ULRD任意一个,问有多少种填法使得从每个格子出发都能走出这个方阵,答案取模.保证未确定的格子<=300. ...一脸懵逼地写了原本30实际20的暴力然后跪着啃了下论文 然而什么都没啃懂不如结论记下来: 首先矩阵行列式的定义:一个n*n的矩阵,行列式值为$\sum_{b是n的一个排列} \ \ \ \ \ ( (-1)^{b的逆序对数} \ \ \ \ \ * \prod_{i=1}^…
分析 我们将没连的点连向周围四个点 其余的按照给定的方向连 我们将所有连出去的位置统一连到0点上 再以0作为树根 于是就将问题转化为了有向图内向树计数 代码 #include<iostream> #include<cstdio> #include<cstring> #include<string> #include<algorithm> #include<cctype> #include<cmath> #include&l…
#6250. 「CodePlus 2017 11 月赛」找爸爸 题目描述 小 A 最近一直在找自己的爸爸,用什么办法呢,就是 DNA 比对. 小 A 有一套自己的 DNA 序列比较方法,其最终目标是最大化两个 DNA 序列的相似程度,具体步骤如下: 给出两个 DNA 序列,第一个长度为 nnn,第二个长度为 mmm. 在两个序列的任意位置插入任意多的空格,使得两个字符串长度相同. 逐位进行匹配,如果两个序列相同位置上的字符都不是空格,假设第一个是 xxx,第二个是 yyy,那么他们的相似程度由 …
Description 有 n 棵树,初始时每棵树的高度为 H_i,第 i 棵树每月都会长高 A_i.现在有个木料长度总量为 S 的订单,客户要求每块木料的长度不能小于 L,而且木料必须是整棵树(即不能为树的一部分).现在问你最少需要等多少个月才能满足订单. Input 第一行 3 个用空格隔开的非负整数 n,S,L,表示树的数量.订单总量和单块木料长度限制.第二行 n 个用空格隔开的非负整数,依次为 H1,H2,…,Hn.第三行 n 个用空格隔开的非负整数,依次为 A1,A2,…,An. Ou…
Description “无体育,不清华”.“每天锻炼一小时,健康工作五十年,幸福生活一辈子” 在清华,体育运动绝对是同学们生活中不可或缺的一部分.为了响应学校的号召,模范好学生王队长决定坚持晨跑.不过由于种种原因,每天都早起去跑步不太现实,所以王队长决定每 a 天晨跑一次.换句话说,假如王队长某天早起去跑了步,之后他会休息 a−1 天,然后第 a 天继续去晨跑,并以此类推. 王队长的好朋友小钦和小针深受王队长坚持锻炼的鼓舞,并决定自己也要坚持晨跑.为了适宜自己的情况,小钦决定每 b 天早起跑步…
1A,拿来练手的好题 用一个优先队列按煮熟时间从小到大排序,被煮熟了就弹出来. 用n个vector维护每种食物的煮熟时间,显然是有序的. 用树状数组维护每种煮熟食物的数量. 每次操作前把优先队列里煮熟时间<=当前时间的弹出,BIT上+1. 每次0操作把食物塞进优先队列和vector 每次1操作先看看树状数组里有没有数,没有输出angry,有的话在树状数组上二分找到最小的数. 每次2操作先看看树状数组里有没有这一种数,有的话输出并-1,没有的话看看vector有没有,有的话输出时间差,没有的话输出…
昨天这题死活调不出来结果是一个地方没取模,凉凉. 首先有个一眼就能看出来的规律... 斐波那契数列满足$a_1, a_2, a_1+a_2, a_1+2a_2, 2a_1+3a_2, 3a_1+5a_2$ 也就是第k项是$fib(k-2)*a_1+fib(k-1)*a_2$ 问题就转化成了求$(fib(k-2)*a_1+fib(k-1)*a_2)\% p=m$,$a_2$在$[l,r]$上的个数. 显然$fib(k-2)a_1$是个常数,那一看就是exgcd题了... 令$a=fib(k-1),…