KMeans的数据压缩】的更多相关文章

import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.utils import shuffle import mahotas as mh original_img = np.array(mh.imread('Penguins.jpg'), dtype=np.float64) / 255 ''' >>> original_img array([[[…
MATLAB基础知识 l  Imread:  读取图片信息: l  axis:轴缩放:axis([xmin xmax ymin ymax zmin zmax cmin cmax]) 设置 x.y 和 z 轴范围以及颜色缩放范围(请参阅 caxis).v = axis 返回包含 x.y 和 z 轴缩放因子的行矢量.v 具有 4 或 6 个分量,具体分别取决于当前坐标轴是二维还是三维.返回值是当前坐标轴的 XLim.Ylim 和 ZLim 属性.   基于 x.y 和 z 数据的最小值和最大值,ax…
K-Means算法 非监督式学习对一组无标签的数据试图发现其内在的结构,主要用途包括: 市场划分(Market Segmentation) 社交网络分析(Social Network Analysis) 管理计算机集群(Organize Computer Clusters) 天文学数据分析(Astronomical Data Analysis) K-Means算法属于非监督式学习的一种,算法的输入是:训练数据集$\{x^{(1)},x^{(2)},\ldots, x^{(m)}\}$(其中$x^…
在监督学习中,有标签信息协助机器学习同类样本之间存在的共性,在预测时只需判定给定样本与哪个类别的训练样本最相似即可.在非监督学习中,不再有标签信息的指导,遇到一维或二维数据的划分问题,人用肉眼就很容易完成,可机器就傻眼了,图(1)描述得很形象. 但处理高维度的数据,人脑也无能为力了,最终还是得设计算法让机器来完成.如何将所有样本分成若干个类簇(cluster),并且每个类簇中的样本具有更高的相似度,这就是聚类分析算法的终极目标.这里以最经典的K-means算法为切入点进行说明. K-means算…
Unsupervised Learning 本周我们讲学习非监督学习算法,会学习到如下概念 聚类(clustering) PCA(Principal Componets Analysis主成分分析),用于加速学习算法,有时在可视化和帮助我们理解数据的时候会有难以置信的作用. 一.内容概要 Clustering K-Means Algorithm Optimization Objective Random Initialization Choosing The Number of Clusters…
一.K-means聚类中心初始化问题. 1)随机初始化各个簇类的中心,进行迭代,直到收敛,并计算代价函数J. 如果k=2~10,可以进行上述步骤100次,并分别计算代价函数J,选取J值最小的一种聚类情况,能够得到一个相对不错的局部最优解.(因为k值较小情况下,不同的随机中心,聚类结果不同) 2)如果k值很大,则多次随机意义不大,随机一次进行聚类即可. 二.如何选择聚类数目K? 肘部法则是一个方法,但效果一般不明显.通常来讲,并没有太绝对的方法,主要靠人工选择,以及人为的洞察力. 三.利用k-me…
前言 HTTP 支持 GZip 压缩,可节省不少传输资源.但遗憾的是,只有下载才有,上传并不支持.如果上传也能压缩,那就完美了.特别适合大量文本提交的场合,比如博客园,就是很好的例子. 虽然标准不支持「上传压缩」,但仍可以自己来实现. Flash 首选方案当然是 Flash,毕竟它提供了压缩 API.除了 zip 格式,还支持 lzma 这种超级压缩.因为是原生接口,所以性能极高.而且对应的 swf 文件,也非常小. JavaScript Flash 逐渐淘汰,但取而代之的 HTML5,却没有提…
本稿为初稿,后续可能还会修改:如果转载,请务必保留源地址,非常感谢! 博客园:http://www.cnblogs.com/data-miner/ 简书:建设中... 知乎:建设中... 当我们在谈论kmeans(1) 引言 当希望快速了解或回顾某些算法的发展时,一般而言,大家都会选择阅读综述性文章,然后有选择性的阅读部分论文.而这种高效率的做法的负面,就是比较无趣的体验,毕竟一直都行走在别人规划好的思路中,总感觉少了点趣味性. 此系列文章一方面旨在回顾一些算法的历史演变轨迹:同时,看看能否挖掘…
K-Means 概念定义: K-Means 是一种基于距离的排他的聚类划分方法. 上面的 K-Means 描述中包含了几个概念: 聚类(Clustering):K-Means 是一种聚类分析(Cluster Analysis)方法.聚类就是将数据对象分组成为多个类或者簇 (Cluster),使得在同一个簇中的对象之间具有较高的相似度,而不同簇中的对象差别较大. 划分(Partitioning):聚类可以基于划分,也可以基于分层.划分即将对象划分成不同的簇,而分层是将对象分等级. 排他(Exclu…
在K-Means聚类算法原理中,我们对K-Means的原理做了总结,本文我们就来讨论用scikit-learn来学习K-Means聚类.重点讲述如何选择合适的k值. 1. K-Means类概述 在scikit-learn中,包括两个K-Means的算法,一个是传统的K-Means算法,对应的类是KMeans.另一个是基于采样的Mini Batch K-Means算法,对应的类是MiniBatchKMeans.一般来说,使用K-Means的算法调参是比较简单的. 用KMeans类的话,一般要注意的…