CNN学习笔记:池化层】的更多相关文章

池化层定义在 tensorflow/python/layers/pooling.py. 有最大值池化和均值池化. 1.tf.layers.max_pooling2d max_pooling2d( inputs, pool_size, strides, padding='valid', data_format='channels_last', name=None ) inputs: 进行池化的数据. pool_size: 池化的核大小(pool_height, pool_width),如[3,3]…
池化操作是利用一个矩阵窗口在输入张量上进行扫描,并且每个窗口中的值通过取最大.取平均或其它的一些操作来减少元素个数.池化窗口由ksize来指定,根据strides的长度来决定移动步长.如果strides都是1,每个矩阵窗口都将被使用,如果strides的值都是2,那么每一维度上的窗口每隔1个被使用. 举例: tf.nn.avg_pool(value, ksize, strides, padding, name=None) 功能:计算池化区域中元素的平均值 输入参数: value:一个四维的Ten…
CNN学习笔记:池化层 池化 池化(Pooling)是卷积神经网络中另一个重要的概念,它实际上是一种形式的降采样.有多种不同形式的非线性池化函数,而其中“最大池化(Max pooling)”是最为常见的.它是将输入的图像划分为若干个矩形区域,对每个子区域输出最大值.直觉上,这种机制能够有效地原因在于,在发现一个特征之后,它的精确位置远不及它和其他特征的相对位置的关系重要.池化层会不断地减小数据的空间大小,因此参数的数量和计算量也会下降,这在一定程度上也控制了过拟合.通常来说,CNN的卷积层之间都…
CNN神经网络架构至少包含一个卷积层 (tf.nn.conv2d).单层CNN检测边缘.图像识别分类,使用不同层类型支持卷积层,减少过拟合,加速训练过程,降低内存占用率. TensorFlow加速所有不同类弄卷积层卷积运算.tf.nn.depthwise_conv2d,一个卷积层输出边接到另一个卷积层输入,创建遵循Inception架构网络 Rethinking the Inception Architecture for Computer Vision https://arxiv.org/ab…
一.前述 本文讲述池化层和经典神经网络中的架构模型. 二.池化Pooling 1.目标 降采样subsample,shrink(浓缩),减少计算负荷,减少内存使用,参数数量减少(也可防止过拟合)减少输入图片大小(降低了图片的质量)也使得神经网络可以经受一点图片平移,不受位置的影响(池化后相当于把图片上的点平移了)正如卷积神经网络一样,在池化层中的每个神经元被连接到上面一层输出的神经元,只对应一小块感受野的区域.我们必须定义大小,步长,padding类型池化神经元没有权重值,它只是聚合输入根据取最…
本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson3/nn_layers_others.py 这篇文章主要介绍了 PyTorch 中的池化层.线性层和激活函数层. 池化层 池化的作用则体现在降采样:保留显著特征.降低特征维度,增大 kernel 的感受野. 另外一点值得注意:pooling 也可以提供一些旋转不变性. 池化层可对提取到的特征信息进行降维,一方面使特征图变小,简化网络计算复杂度并在一定程度上避…
CNN学习笔记:全连接层 全连接层 全连接层在整个网络卷积神经网络中起到“分类器”的作用.如果说卷积层.池化层和激活函数等操作是将原始数据映射到隐层特征空间的话,全连接层则起到将学到的特征表示映射到样本的标记空间的作用. 一段来自知乎的通俗理解: 从卷积网络谈起,卷积网络在形式上有一点点像咱们正在召开的“人民代表大会”.卷积核的个数相当于候选人,图像中不同的特征会激活不同的“候选人”(卷积核).池化层(仅指最大池化)起着类似于“合票”的作用,不同特征在对不同的“候选人”有着各自的喜好. 全连接相…
卷积神经网络(CNN)由输入层.卷积层.激活函数.池化层.全连接层组成,即INPUT-CONV-RELU-POOL-FC (1)卷积层:用它来进行特征提取,如下: 输入图像是32*32*3,3是它的深度(即R.G.B),卷积层是一个5*5*3的filter(感受野),这里注意:感受野的深度必须和输入图像的深度相同.通过一个filter与输入图像的卷积可以得到一个28*28*1的特征图,上图是用了两个filter得到了两个特征图: 我们通常会使用多层卷积层来得到更深层次的特征图.如下: 关于卷积的…
4.1卷积神经网络 觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.9池化层 优点 池化层可以缩减模型的大小,提高计算速度,同时提高所提取特征的鲁棒性. 池化层操作 池化操作与卷积操作类似,但是池化操作是保留池化窗口在扫过原始图像中时的最大值.注意:每个信道都在其单独的信道中执行池化操作. 其维度公式也满足公式: \[\lfloor\frac{(n+2p-f)}{s}+1\rfloor*\lfloor\frac{(n+2p-f)}{s}+1\rfloor\] 其中n为原始图像大小,p…
基于深度学习和迁移学习的识花实践(转)   深度学习是人工智能领域近年来最火热的话题之一,但是对于个人来说,以往想要玩转深度学习除了要具备高超的编程技巧,还需要有海量的数据和强劲的硬件.不过 TensorFlow 和 Keras 等框架的出现大大降低了编程的复杂度,而迁移学习的思想也允许我们利用现有的模型加上少量数据和训练时间,取得不俗的效果. 这篇文章将示范如何利用迁移学习训练一个能从图片中分类不同种类的花的模型,它在五种花中能达到 80% 以上的准确度(比瞎蒙高了 60% 哦),而且只需要普…
来看上图的简单CNN: 从39x39x3的原始图像 不填充且步长为1的情况下经过3x3的10个filter卷积后 得到了 37x37x10的数据 不填充且步长为2的情况下经过5x5的20个filter卷积后 得到了 17x17x20的数据 不填充且步长为2的情况下经过5x5的40个filter卷积后 得到了 7x7x40的最终结果 将7x7x40的卷积层全部展开作为输入特征,建立一个输入层单元数为1960的神经网络即可 卷积神经网络常见的结构: 1.Conv卷积层如上图所见 2.Pool池化层…
参考:https://blog.csdn.net/kyang624823/article/details/78633897 卷积层 池化层反向传播: 1,CNN的前向传播 a)对于卷积层,卷积核与输入矩阵对应位置求积再求和,作为输出矩阵对应位置的值.如果输入矩阵inputX为M*N大小,卷积核为a*b大小,那么输出Y为(M-a+1)*(N-b+1)大小.  b)对于池化层,按照池化标准把输入张量缩小. c)对于全连接层,按照普通网络的前向传播计算. 2,CNN反向传播的不同之处: 首先要注意的是…
tensorflow CNN 卷积神经网络中的卷积层和池化层的代码和效果图 因为很多 demo 都比较复杂,专门抽出这两个函数,写的 demo. 更多教程:http://www.tensorflownews.com #!/usr/bin/python # -*- coding: UTF-8 -*- import matplotlib.pyplot as plt import tensorflow as tf from PIL import Image import numpy img = Ima…
这里使用的数据集仍然是CIFAR-10,由于之前写过一篇使用AlexNet对CIFAR数据集进行分类的文章,已经详细介绍了这个数据集,当时我们是直接把这些图片的数据文件下载下来,然后使用pickle进行反序列化获取数据的,具体内容可以参考这里:第十六节,卷积神经网络之AlexNet网络实现(六) 与MNIST类似,TensorFlow中也有一个下载和导入CIFAR数据集的代码文件,不同的是,自从TensorFlow1.0之后,将里面的Models模块分离了出来,分离和导入CIFAR数据集的代码在…
原文地址:https://blog.csdn.net/CVSvsvsvsvs/article/details/90477062 池化层作用机理我们以最简单的最常用的max pooling最大池化层为例,对池化层作用机理进行探究.其他池化层的作用机理也大致适用这一机理,在这里就不加入讨论. 图片和以下部分内容来自 CS231n 从上面左图可以看到,使用了pool操作其实就是降低图片的空间尺寸.右图使用一个 2 × 2的 池化核(filter),以2为步长(stride),对图片进行max pool…
摘要:池化层的主要目的是降维,通过滤波器映射区域内取最大值.平均值等操作. 均值池化:tf.nn.avg_pool(input,ksize,strides,padding) 最大池化:tf.nn.max_pool(input,ksize,strides,padding) input:通常情况下是卷积层输出的featuremap,shape=[batch,height,width,channels]              假定这个矩阵就是卷积层输出的featuremap(2通道输出)  他的s…
卷积层Conv的输入:高为h.宽为w,卷积核的长宽均为kernel,填充为pad,步长为Stride(长宽可不同,分别计算即可),则卷积层的输出维度为: 其中上开下闭开中括号表示向下取整. MaxPooling层的过滤器长宽设为kernel*kernel,则池化层的输出维度也适用于上述公司计算. 具体计算可以AlexNet为例.…
卷积神经网络(CNN)学习笔记1:基础入门 Posted on 2016-03-01   |   In Machine Learning  |   9 Comments  |   14935  Views 概述 卷积神经网络(Convolutional Neural Network, CNN)是深度学习技术中极具代表的网络结构之一,在图像处理领域取得了很大的成功,在国际标准的ImageNet数据集上,许多成功的模型都是基于CNN的.CNN相较于传统的图像处理算法的优点之一在于,避免了对图像复杂的…
在tensorflow中的卷积和池化层(一)和各种卷积类型Convolution这两篇博客中,主要讲解了卷积神经网络的核心层,同时也结合当下流行的Caffe和tf框架做了介绍,本篇博客将接着tensorflow中的卷积和池化层(一)的内容,继续介绍tf框架中卷积神经网络CNN的使用. 因此,接下来将介绍CNN的入门级教程cifar10\100项目.cifar10\100 数据集是由Alex Krizhevsky.Vinod Nair和Geoffrey Hinton收集的,这两个数据集都是从800…
CNN学习笔记:卷积神经网络 卷积神经网络 基本结构 卷积神经网络是一种层次模型,其输入是原始数据,如RGB图像.音频等.卷积神经网络通过卷积(convolution)操作.汇合(pooling)操作和非线性激活函数的映射等一系列操作的层层堆叠,将高层语义信息逐层由原始信息中抽取出来,逐层抽象. 将信息逐渐抽象出来的过程称为前馈运算(Feed-Forward).通过计算预测值与真实值之间的误差和损失,凭借反向传播算法(Back-Propagation algorithm)将误差或损失由最后一层逐…
CNN学习笔记:激活函数 激活函数 激活函数又称非线性映射,顾名思义,激活函数的引入是为了增加整个网络的表达能力(即非线性).若干线性操作层的堆叠仍然只能起到线性映射的作用,无法形成复杂的函数.常用的函数有sigmoid.双曲正切.线性修正单元函数等等. 使用一个神经网络时,需要决定使用哪种激活函数用隐藏层上,哪种用在输出节点上. 比如,在神经网路的前向传播中,这两步会使用到sigmoid函数.sigmoid函数在这里被称为激活函数. sigmoid函数 之前在线性回归中,我们用过这个函数,使我…
CNN学习笔记:Logistic回归 线性回归 二分类问题 Logistic回归是一个用于二分分类的算法,比如我们有一张图片,判断其是否为一张猫图,为猫输出1,否则输出0. 基本术语 进行机器学习,首先要有数据,比如我们收集了一批关于西瓜的数据,例如 (色泽=青绿:根蒂=收缩:敲声=浊响) (色泽=乌黑:根蒂=稍蜷:敲声=沉闷) (色泽=浅白:根蒂=硬挺:敲声=清脆) 每对括号内是一条记录,这组记录的集合称为一个数据集,每条记录是关于一个事件或对象的描述,称为一个示例或样本,反映事件或对象在某方…
代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https://www.cnblogs.com/xiximayou/p/12706576.html 激活函数的实现(sigmoid.softmax.tanh.relu.leakyrelu.elu.selu.softplus):https://www.cnblogs.com/xiximayou/p/127130…
在卷积神经网络中,我们经常会碰到池化操作,而池化层往往在卷积层后面,通过池化来降低卷积层输出的特征向量,同时改善结果(不易出现过拟合).为什么可以通过降低维度呢? 因为图像具有一种“静态性”的属性,这也就意味着在一个图像区域有用的特征极有可能在另一个区域同样适用.因此,为了描述大的图像,一个很自然的想法就是对不同位置的特征进行聚合统计,例如,人们可以计算图像一个区域上的某个特定特征的平均值 (或最大值)来代 表这个区域的特征. 1.  一般池化(General Pooling) 池化作用于图像中…
在官方tutorial的帮助下,我们已经使用了最简单的CNN用于Mnist的问题,而其实在这个过程中,主要的问题在于如何设置CNN网络,这和Caffe等框架的原理是一样的,但是tf的设置似乎更加简洁.方便,这其实完全类似于Caffe的python接口,但是由于框架底层的实现不一样,tf无论是在单机还是分布式设备上的实现效率都受到一致认可. CNN网络中的卷积和池化层应该怎么设置呢?tf相应的函数是什么?具体的tutorial地址参见Tensorflow中文社区. 卷积(Convolution)…
CNN学习笔记:批标准化 Batch Normalization Batch Normalization, 批标准化, 是将分散的数据统一的一种做法, 也是优化神经网络的一种方法. 在神经网络的训练过程中,随着网络深度的增加,后面每一层的输入值(即x=WU+B,U是输入)逐渐发生偏移和变动,之所以训练收敛慢,一般是整体分布往非线性函数的取值区间的上下限两端靠近,所以这将导致反向传播时低层网络的梯度消失,这是训练深层神经网络收敛越来越慢的本质原因,而BN就是通过一定的规范手动,把每层神经网络任意神…
CNN学习笔记:目标函数 分类任务中的目标函数 目标函数,亦称损失函数或代价函数,是整个网络模型的指挥棒,通过样本的预测结果与真实标记产生的误差来反向传播指导网络参数学习和表示学习. 假设某分类任务共N个训练样本,针对网络最后分类层第i个样本的输入特征为xi,其对应的真实标记为yi∈{1,2,...,C},另h=(h1,h2,...,hC)⊤为网络的最终输出,即样本i的预测结果,其中C为分类任务类别数. 交叉熵损失函数 交叉熵损失函数又称为Softmax损失函数,是目前卷积神经网络中最常用的分类…
CNN学习笔记:卷积运算 边缘检测 卷积 卷积是一种有效提取图片特征的方法.一般用一个正方形卷积核,遍历图片上的每一个像素点.图片与卷积核重合区域内相对应的每一个像素值乘卷积核 .内相对应点的权重,然后求和,再加上偏置后,最后得到输出图片中的一个像素值. 卷积操作的作用 卷积是一种局部操作,通过一定大小的卷积核作用于局部图像区域获得图像的局部信息. 我们现在使用三种边缘卷积核(亦称滤波器),整体边缘滤波器.横向边缘滤波器和纵向边缘滤波器. 试想,若原图像素(x, y)处可能存在物体边缘,则其四周…
CNN学习笔记:神经网络表示 双层神经网络模型 在一个神经网络中,当你使用监督学习训练它的时候,训练集包含了输入x还有目标输出y.隐藏层的含义是,在训练集中,这些中间节点的真正数值,我们是不知道的,即在训练集中你看不到他们的数值,我们只能看到输入和输出. 定义神经网络的层数 神经网络层数是指,除输入层意外的其他层的合计数,此处只有一层隐藏层和一层输出层. 神经网络的计算过程 a[n]表示第N层神经元的激活函数组成的矩阵,z[n]函数表示第N层神经元的处理逻辑做出的矩阵,激活函数a通过z函数的数据…
CNN学习笔记:正则化缓解过拟合 过拟合现象 在下图中,虽然绿线完美的匹配训练数据,但太过依赖,并且与黑线相比,对于新的测试数据上会具有更高的错误率.虽然这个模型在训练数据集上的正确率很高,但这个模型却很难对从未见过的数据做出正确响应,认为该模型存在过拟合现象. 绿线代表过拟合模型,黑线代表正则化模型.故我们使用正则化来解决过拟合问题. 正则化模型 正则化是机器学习中通过显示控制模型复杂度来避免模型过拟合.确保泛化能力的一种有效方式.正则化在损失函数中引入模型复杂度指标,利用给W加权值,弱化了训…