首先来一段百度百科压压惊... 迪杰斯特拉算法(Dijkstra)是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有权图中最短路径问题.迪杰斯特拉算法主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止. 让我来翻译一下:Dijkstra可以求出一个点到一个图中其他所有节点的最短路径,故也称对于单源最短路径的一种解法 算法实现步骤: a.初始时,只包括源点,即S = {v},v的距离为0.U包含除v以外的其他顶点,即…
文字描述 引言:如下图一个交通系统,从A城到B城,有些旅客可能关心途中中转次数最少的路线,有些旅客更关心的是节省交通费用,而对于司机,里程和速度则是更感兴趣的信息.上面这些问题,都可以转化为求图中,两顶点最短带权路径的问题. 单源点的最短路径问题: 给定带权有向图G和源点v,求从v到G中其余各顶点的最短路径.迪杰斯特拉(Dijkstra)提出了一个按路径长度递增的次序产生最短路径的算法.迪杰斯特拉(Dijkstra)算法描述如下: 示意图 算法分析 结合代码实现部分分析这个算法的运行时间.本博客…
#include <iostream> #include <iomanip> #include <string> using namespace std; #define INFINITY 65535//无边时的权值 #define MAX_VERTEX_NUM 10//最大顶点数 typedef struct MGraph{ string vexs[10];//顶点信息 int arcs[10][10];//邻接矩阵 int vexnum, arcnum;//顶点数和…
什么也不想说,现在直接上封装的方法: using System; using System.Collections.Concurrent; using System.Collections.Generic; namespace 算法 { /// <summary> /// Dijkstra /// 迪杰斯特拉算法 /// </summary> public class Dijkstra : ICloneable { /// <summary>节点集合</summa…
dijkstra算法(迪杰斯特拉算法) 用途:有向图最短路径问题 定义:迪杰斯特拉算法是典型的算法,一般的表述通常有两种方式,这里均采用永久和临时标号的方式,该算法要求图中不存在负权边 用永久和临时标号方式 用open和close表的方式 算法思路:按路径长度递增产生算法: 把顶点的集合分为两组 S组:已经求出最短路径的集合(初始时只含有源点V0) V-S=T:尚未确定的顶点集合 将T中顶点按递增的次序加入到S中,保证: 从源点V0到S中其他各顶点的长度都不大于从V0到T中任何顶点的最短路径 长…
Dijkstra's algorithm 迪杰斯特拉算法是目前已知的解决单源最短路径问题的最快算法. 单源(single source)最短路径,就是从一个源点出发,考察它到任意顶点所经过的边的权重之和为最小的路径. 迪杰斯特拉算法不能处理权值为负数或为零的边,因为本质上它是一种贪心算法,出现了负数意味着它可能会舍弃一条正确的边,而选择一个长边和一个负数边,因为长边和负数边的权值之和可能小于那条正确的边. 算法描述 它的过程也很简单,按照广度遍历的方式考察每一条有向边(v,w),如果可以对边进行…
一 综述 Dijkstra算法(迪杰斯特拉算法)主要是用于求解有向图中单源最短路径问题.其本质是基于贪心策略的(具体见下文).其基本原理如下: (1)初始化:集合vertex_set初始为{source_vertex},dist数组初始值为$dist[i] = G.arc[source\_vertex][i],i=0,1,\ldots,n-1$ (2)从顶点集合V-vertex_set中选出$v_j$,满足$dist[j] = Min\left\{dist[i] | v_i∈V-vertex\_…
c/c++ 图的最短路径 Dijkstra(迪杰斯特拉)算法 图的最短路径的概念: 一位旅客要从城市A到城市B,他希望选择一条途中中转次数最少的路线.假设途中每一站都需要换车,则这个问题反映到图上就是要找一条从顶点A到B所含边的数量最少的路径.我们只需从顶点A出发对图作广度优先遍历,一旦遇到顶点B就终止.由此所得广度优先生成树上,从根顶点A到顶点B的路径就是中转次数最少的路径.但是这只是一类最简单的图的最短路径问题.有时,对于旅客来说,可能更关心的是节省交通费用:而对于司机来说,里程和速度则是他…
文转:http://blog.csdn.net/zxq2574043697/article/details/9451887 一: 最短路径算法 1. 迪杰斯特拉算法 2. 弗洛伊德算法 二: 1. 迪杰斯特拉算法 求从源点到其余各点的最短路径 依最短路径的长度递增的次序求得各条路径 路径长度最短的最短路径的特点: 在这条路径上,必定只含一条弧,并且这条弧的权值最小. 下一条路径长度次短的最短路径的特点: 它只可能有两种情况:或是直接从源点到该点(只含一条弧):或者是从源点经过顶点v1,再到达该顶…
在网图和非网图中,最短路径的含义不同.非网图中边上没有权值,所谓的最短路径,其实就是两顶点之间经过的边数最少的路径:而对于网图来说,最短路径,是指两顶点之间经过的边上权值之和最少的路径,我们称路径上第一个顶点是源点,最后一个顶点是终点. 我们讲解两种求最短路径的算法.第一种,从某个源点到其余各顶点的最短路径问题. 1,迪杰斯特拉(Dijkstra)算法 迪杰斯特拉算法是一个按路径长度递增的次序产生最短路径的算法,每次找到一个距离V0最短的点,不断将这个点的邻接点加入判断,更新新加入的点到V0的距…