今天介绍数值计算和优化方法中非常有效的一种数值解法,共轭梯度法.我们知道,在解大型线性方程组的时候,很少会有一步到位的精确解析解,一般都需要通过迭代来进行逼近,而 PCG 就是这样一种迭代逼近算法. 我们先从一种特殊的线性方程组的定义开始,比如我们需要解如下的线性方程组: Ax=b" role="presentation">Ax=bAx=b 这里的 A(n×n)" role="presentation" style="positi…
# coding=utf-8 #共轭梯度算法求最小值 import numpy as np from scipy import optimize def f(x, *args): u, v = x a, b, c, d, e, f,g,h = args return a*u**g+ b*u*v + c*v**h + d*u + e*v + f def gradf(x, *args): u, v = x a, b, c, d, e, f,g,h = args gu = g*a*u + b*v +…
无预处理共轭梯度 要求解线性方程组 ,稳定双共轭梯度法从初始解 开始按以下步骤迭代: 任意选择向量 使得 ,例如, 对 若 足够精确则退出 预处理共轭梯度 预处理通常被用来加速迭代方法的收敛.要使用预处理子 来求解线性方程组 ,预处理稳定双共轭梯度法从初始解 开始按以下步骤迭代: 任意选择向量 使得 ,例如, 对 若 足够精确则退出 这个形式等价于将无预处理的稳定双共轭梯度法应用于显式预处理后的方程组 , 其中 ,,.换句话说,左预处理和右预处理都可以通过这个形式实施. Mahout 分布式共轭…
一.图像梯度算法 1.图像梯度-Sobel算子 dst = cv2.Sobel(src, ddepth, dx, dy, ksize) ddepth:图像的深度 dx和dy分别表示水平和竖直方向 ksize是Sobel算子的大小 # *******************图像梯度算法**********************开始 import cv2 # import numpy as np img = cv2.imread('pie.png',cv2.IMREAD_GRAYSCALE) cv…
L1正则化是一种常用的获取稀疏解的手段,同时L1范数也是L0范数的松弛范数.求解L1正则化问题最常用的手段就是通过加速近端梯度算法来实现的. 考虑一个这样的问题: minx  f(x)+λg(x) x∈Rn,f(x)∈R,这里f(x)是一个二阶可微的凸函数,g(x)是一个凸函数(或许不可导),如上面L1的正则化||x||. 此时,只需要f(x)满足利普希茨(Lipschitz)连续条件,即对于定义域内所有向量x,y,存在常数M使得||f'(y)-f'(x)||<=M·||y-x||,那么这个模型…
邻近梯度下降法 对于无约束凸优化问题,当目标函数可微时,可以采用梯度下降法求解:当目标函数不可微时,可以采用次梯度下降法求解:当目标函数中同时包含可微项与不可微项时,常采用邻近梯度下降法求解.上述三种梯度算法均属于离线批处理类型算法,在大规模的数据问题中,每次迭代都需要计算整个数据集梯度,因而需要较大的计算代价和存储空间.在线邻近梯度法(Online Proximal Gradient,OPG)是随即优化算法与临近梯度算法的结合,是一种典型的随机优化方法,以单个或小批量采样数据而实现数据实时处理…
对于大型矩阵,预处理是很重要的.常用的预处理方法有: (1) 雅克比预处理 (2)块状雅克比预处理 (3)半LU 分解 (4)超松弛法…
强化学习与监督学习的区别在于,监督学习的每条样本都有一个独立的label,而强化学习的奖励(label)是有延后性,往往需要等这个回合结束才知道输赢 Policy Gradients(PG)计算某个状态下所有策略的分布概率,类似于经典分类问题给每个类别预测一个概率,好的PG应该给优良的策略分配较高的概率 PG基于以下假定: 如果只在游戏终结时才有奖励和惩罚,该回合赢了,这个回合的所有样本都是有""偏正的",反之则该回合所有样本都是“偏负的” 距离赢的那刻越近,贡献越大,越远贡…
在进行图像处理过程中,我们常常会用到梯度迭代求解大型线性方程组.今天在用cuda对神秘矩阵进行求解的时候.出现了缺少dll的情况: 报错例如以下图: watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvZ2dnZ19nZ2c=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt=""> 缺少cusparse32_60.dll 缺失c…
蒙特卡罗方法概述 蒙特卡罗方法又称统计模拟法.随机抽样技术,是一种随机模拟方法,以概率和统计理论方法为基础的一种计算方法,是使用随机数(或更常见的伪随机数)来解决很多计算问题的方法.将所求解的问题同一定的概率模型相联系,用电子计算机实现统计模拟或抽样,以获得问题的近似解.为象征性地表明这一方法的概率统计特征,故借用赌城蒙特卡罗命名. 蒙特卡罗方法的基本思想 用事件发生的"频率"来决定事件的"概率".高速电子计算机使得用数学方法在计算机上大量.快速地模拟这样的试验成为…