决策树(Decision tree) 决策树是以实例为基础的归纳学习算法.     它从一组无次序.无规则的元组中推理出决策树表示形式的分类规则.它采用自顶向下的递归方式,在决策树的内部结点进行属性值的比较,并根据不同的属性值从 该结点向下分支,叶结点是要学习划分的类.从根到叶结点的一条路径就对应着一条合取规则,整个决策树就对应着一组析取表达式规则.1986年 Quinlan提出了著名的ID3算法.在ID3算法的基础上,1993年Quinlan又提出了C4.5算法.为了适应处理大规模数据集的需要…
SparkMLlib分类算法之决策树学习 (一) 决策树的基本概念 决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法.由于这种决策分支画成图形很像一棵树的枝干,故称决策树.在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系.Entropy = 系统的凌乱程度,使用算法ID3, C4.5和C5.0生成树算法使用熵.这一度量是…
https://www.cnblogs.com/leoo2sk/archive/2010/09/19/decision-tree.html 3.1.摘要 在前面两篇文章中,分别介绍和讨论了朴素贝叶斯分类与贝叶斯网络两种分类算法.这两种算法都以贝叶斯定理为基础,可以对分类及决策问题进行概率推断.在这一篇文章中,将讨论另一种被广泛使用的分类算法——决策树(decision tree).相比贝叶斯算法,决策树的优势在于构造过程不需要任何领域知识或参数设置,因此在实际应用中,对于探测式的知识发现,决策树…
C4.5是机器学习算法中的另一个分类决策树算法,它是基于ID3算法进行改进后的一种重要算法,相比于ID3算法,改进有如下几个要点: 1)用信息增益率来选择属性.ID3选择属性用的是子树的信息增益,这里可以用很多方法来定义信息,ID3使用的是熵(entropy, 熵是一种不纯度 度量准则),也就是熵的变化值,ID3算法以信息增益作为划分训练数据集的特征,有一个致命的缺点:选择取值比较多的特征往往会具有较大的信息增益,所以ID3偏向于选择取值较多的特征. 2)在决策树构造过程中进行剪枝,因为某些具有…
(注:本篇博文是对<统计学习方法>中决策树一章的归纳总结,下列的一些文字和图例均引自此书~) 决策树(decision tree)属于分类/回归方法.其具有可读性.可解释性.分类速度快等优点.决策树学习包含3个步骤:特征选择.决策树生成.决策树修剪(剪枝). 0 - 决策树问题 0.0 - 问题描述 假设训练集为 $$D=\{(x_1,y_1),(x_2,y_2),\cdots ,(x_N,y_N)\},$$ 其中$x_i=(x_i^{(1)},x_i^{(2)},\cdots,x_i^{(n…
http://blog.csdn.net/lsldd/article/details/41223147 从这一章开始进入正式的算法学习. 首先我们学习经典而有效的分类算法:决策树分类算法. 1.决策树算法 决策树用树形结构对样本的属性进行分类,是最直观的分类算法,而且也可以用于回归.不过对于一些特殊的逻辑分类会有困难.典型的如异或(XOR)逻辑,决策树并不擅长解决此类问题. 决策树的构建不是唯一的,遗憾的是最优决策树的构建属于NP问题.因此如何构建一棵好的决策树是研究的重点. J. Ross Q…
摘要:旁听了清华大学王建勇老师的 数据挖掘:理论与算法 的课,讲的还是挺细的,好记性不如烂笔头,在此记录自己的学习内容,方便以后复习.   一:贝叶斯分类器简介 1)贝叶斯分类器是一种基于统计的分类器,它根据给定样本属于某一个具体类的概率来对其进行分类. 2)贝叶斯分类器的理论基础是贝叶斯理论. 3)贝叶斯分类器的一种简单形式是朴素贝叶斯分类器,跟随机森林.神经网络等分类器都有可比的性能. 4)贝叶斯分类器是一种增量型的分类器.   二:贝叶斯理论 第一次接触贝叶斯还是本科学概率论的时候,那时候…
目录 理论介绍 什么是分类 分类的步骤 什么是决策树 决策树归纳 信息增益 相关理论基础 计算公式 ID3 C4.5 python实现 参考资料 理论介绍 什么是分类 分类属于机器学习中监督学习的一种.模型的学习在被告知每个训练样本属于哪个类的"指导"下进行,新数据使用训练集中得到的规则进行分类. 分类的步骤 什么是决策树 决策树归纳 信息增益 相关理论基础 计算公式 ID3 注:生成的决策树有误,fair对应的应该是yes,excellent对应的应该是no C4.5 python实…
ID3分类算法的编码实现 <?php /* *决策树ID3算法(分类算法的实现) */ /* *求信息增益Grain(S1,S2) */ //-------------------------------------------------------------------- function Grain($train,$attriname,$flagsyes,$flagsno) { $attributename = array(NULL);//用来存放属性$attriname不同的属性值 a…
分类算法:对目标值进行分类的算法    1.sklearn转换器(特征工程)和预估器(机器学习)    2.KNN算法(根据邻居确定类别 + 欧氏距离 + k的确定),时间复杂度高,适合小数据    3.模型选择与调优    4.朴素贝叶斯算法(假定特征互独立 + 贝叶斯公式(概率计算) + 拉普拉斯平滑系数),假定独立,对缺失数据不敏感,用于文本分类    5.决策树(找到最高效的决策顺序--信息增益(关键特征=信息熵-条件熵) + 可以可视化)    6.随机森林(bootstarp(又放回…