上手TensorFlow】的更多相关文章

前文:三分钟快速上手TensorFlow 2.0 (中)——常用模块和模型的部署 TensorFlow 模型导出 使用 SavedModel 完整导出模型 不仅包含参数的权值,还包含计算的流程(即计算图) tf.saved_model.save(model, "保存的目标文件夹名称") 将模型导出为 SavedModel model = tf.saved_model.load("保存的目标文件夹名称") 载入 SavedModel 文件 因为 SavedModel…
本文学习笔记参照来源:https://tf.wiki/zh/basic/basic.html 前文:三分钟快速上手TensorFlow 2.0 (上)——前置基础.模型建立与可视化 tf.train.Checkpoint :变量的保存与恢复 只保存模型的参数,不保存模型的计算过程 需要导出模型(无需源代码也能运行模型),请参考 SavedModel 可以使用其 save() 和 restore() 方法将 TensorFlow 中所有包含 Checkpointable State 的对象进行保存…
本文学习笔记参照来源:https://tf.wiki/zh/basic/basic.html 学习笔记类似提纲,具体细节参照上文链接 一些前置的基础 随机数 tf.random uniform(shape()) 两个元素零向量 tf.zeros(shape=(2)) 2x2常量 tf.constant([1,2],[3,4]) 查看形状.类型.值 A.shape A.dtype A.numpy() 矩阵相加 tf.add(A,B) 矩阵相乘 tf.matmul(A,B) 自动求导机制  tf.G…
tensorflow中softmax_cross_entropy和sparse_softmax_cross_entropy的区别 都是softmax cross entropy损失函数,区别在于label的编码形式: tf.losses.softmax_cross_entropy,需要的是one-hot编码的label tf.losses.sparse_softmax_cross_entropy,需要的是一个整数(代表类别索引)的label ref tf.contrib.eager.XXXMet…
TensorFlow Hub 模型复用 TF Hub 网站 打开主页 https://tfhub.dev/ ,在左侧有 Text.Image.Video 和 Publishers 等选项,可以选取关注的类别,然后在顶部的搜索框输入关键字可以搜索模型. TF Hub 安装 是单独的一个库,需要单独安装,安装命令如下: pip install tensorflow-hub TF Hub 模型使用样例 import tensorflow_hub as hub hub_handle = 'https:/…
tensorflow实现基于LSTM的文本分类方法 作者:u010223750 引言 学习一段时间的tensor flow之后,想找个项目试试手,然后想起了之前在看Theano教程中的一个文本分类的实例,这个星期就用tensorflow实现了一下,感觉和之前使用的theano还是有很大的区别,有必要总结mark一下 模型说明 这个分类的模型其实也是很简单,主要就是一个单层的LSTM模型,当然也可以实现多层的模型,多层的模型使用Tensorflow尤其简单,下面是这个模型的图  简单解释一下这个图…
雷锋网按:本文作者陆池,原文载于作者个人博客,雷锋网已获授权. 引言 学习一段时间的tensor flow之后,想找个项目试试手,然后想起了之前在看Theano教程中的一个文本分类的实例,这个星期就用tensorflow实现了一下,感觉和之前使用的theano还是有很大的区别,有必要总结mark一下. 模型说明 这个分类的模型其实也是很简单,主要就是一个单层的LSTM模型,当然也可以实现多层的模型,多层的模型使用Tensorflow尤其简单,下面是这个模型的图 简单解释一下这个图,每个word经…
新手入门深度学习,选择 TensorFlow 有哪些益处? 佟达:首先,对于新手来说,TensorFlow的环境配置包装得真心非常好.相较之下,安装Caffe要痛苦的多,如果还要再CUDA环境下配合OpenCV使用,对于新手来说,基本上不折腾个几天是很难搞定的. 其次,基于TensorFlow的教学资源非常多,中英文的都有,这对于新手也是非常有帮助的.Google做社区非常有一套,在中国有专门的一群人,会在第一时间把Google的开发者相关的进展翻译成中文. 另外,由于有Google背书,Ten…
TensorFlow是谷歌2015年开源的主流深度学习框架,目前已得到广泛应用.<TensorFlow:实战Google深度学习框架(第2版)>为TensorFlow入门参考书,帮助快速.有效的方式上手TensorFlow和深度学习.书中省略了烦琐的数学模型推导,从实际应用问题出发,通过具体的TensorFlow示例介绍如何使用深度学习解决实际问题.书中包含深度学习的入门知识和大量实践经验,是走进这个前沿.热门的人工智能领域的优选参考书. 第2版将书中所有示例代码从TensorFlow 0.9…
TensorFlow的Javascript版 TensorFlow一直努力扩展自己的基础平台环境,除了熟悉的Python,当前的TensorFlow还实现了支持Javascript/C++/Java/Go/Swift(预发布版)共6种语言. 越来越多的普通程序员,可以容易的在自己工作的环境加入机器学习特征,让产品更智能. 在Javascript语言方面,TensorFlow又分为两个版本.一个是使用node.js支持,用于服务器端开发的@tensorflow/tfjs-node.安装方法: np…
自学人工智能的第一天 "TensorFlow 是谷歌 2015 年开源的主流深度学习框架,目前已得到广泛应用.本书为 TensorFlow 入门参考书,旨在帮助读者以快速.有效的方式上手 TensorFlow 和深度学习.书中省略了烦琐的数学模型推导,从实际应用问题出发,通过具体的 TensorFlow 示例介绍如何使用深度学习解决实际问题.书中包含深度学习的入门知识和大量实践经验,是走进这个前沿.热门的人工智能领域的优选参考书 . “互联网+”的大潮催生了诸如“互联网+外卖”.“互联网+打车”…
本系列将利用Docker和阿里云容器服务,帮助您上手TensorFlow的机器学习方案 第一篇:打造TensorFlow的实验环境 第二篇:轻松搭建TensorFlow Serving集群 第三篇:打通TensorFlow持续训练链路 第四篇:利用Neural Style的TensorFlow实现,像梵高一样作画 第五篇:轻松搭建分布式TensorFlow训练集群(上) 本文是该系列中的第三篇文章, 将为您介绍如何利用阿里云的服务快速搭建TensorFlow从训练到服务的交付平台. 随着goog…
示例代码托管在:http://www.github.com/dashnowords/blogs 博客园地址:<大史住在大前端>原创博文目录 目录 一. 上手TensorFlow.js 二. 使用TensorFlow.js构建卷积神经网络 卷积神经网络 搭建LeNet-5模型 三. 基于迁移学习的语音指令识别 推荐课程 TensorFlow是Google推出的开源机器学习框架,并针对浏览器.移动端.IOT设备及大型生产环境均提供了相应的扩展解决方案,TensorFlow.js就是JavaScri…
最近闲来无事,老潘以一名普通算法工程师的角度,结合自身以及周围人的情况,理性也感性地分析一下极市平台前些天发布的2020年度中国计算机视觉人才调研报告. 以下的"计算机视觉人才"简称"人才",感觉说人才有点怪怪的感觉?自己也算人才么?老潘只不过是一个普普通通的算法工程师罢了(逃). 这个报告一共分为几个方面,用大白话讲一下就是: 计算机人才哪个城市最多,哪个专业最多.都喜欢发些什么论文.喜欢什么编程语言.深度学习框架.工作地点等等 作为计算机人才,我们应该学习什么才…
下面代码是Tensorflow入门教程中的代码,实现了一个softmax分类器. 第4行是将data文件夹下的mnist数据压缩包读取为tf使用的minibatch字典. 第6-11行定义了所用的变量. 第12行训练过程. 第13-15行创建会话. 第17-19行代入数据开始循环. 第20-21行评估模型. 运行很快结束,得到正确率为91.75%. import input_data import tensorflow as tf mnist = input_data.read_data_set…
本文同时也发布在自建博客地址. 本文翻译自www.tensorflow.org的英文教程. 本文档介绍了TensorFlow编程环境,并向您展示了如何使用Tensorflow解决鸢尾花分类问题. 先决条件 在本文档中使用示例代码之前,您需要执行以下操作: 确认安装了Tensorflow 如果在Anaconda的虚拟环境下安装了TF,激活你的TF环境 通过以下命令安装或者升级pandas pip install pandas ​ 获取示例代码 按照以下步骤获取我们将要全程使用的示例代码 通过输入以…
安装环境:Win 10 专业版 64位 + Visual Studio 2015 Community. 记录下自己在有GPU的环境下安装配置MXNet的过程.该过程直接使用MXNet release 的 pre-built 包,没有自己使用CMake编译.网上有很多自己编译的教程,过程都比较繁琐,直接使用release包对新手来说更加简单方便. 选择MXNet的原因是因为看了<Caffe.TensorFlow.MXNet三个开源库的对比>这篇博文,其中指出MXNet相对来说是最易上手的深度学习…
如果内容侵权的话,联系我,我会立马删了的-因为参考的太多了,如果一一联系再等回复,战线太长了--蟹蟹给我贡献技术源泉的作者们- 最近准备从理论和实验两个方面学习深度学习,所以,前面装好了Theano环境,后来知乎上看到这个回答,就调研了一下各个深度学习框架,我没有看源码,调研也不是很深入,仅仅是为了选择深度学习框架做的一个大概了解- 1. 如何选择深度学习框架? 参考资料如下: 1. https://github.com/zer0n/deepframeworks/blob/master/READ…
库名称 开发语言 支持接口 安装难度(ubuntu) 文档风格 示例 支持模型 上手难易 Caffe c++/cuda c++/python/matlab *** * *** CNN ** MXNet c++/cuda python/R/Julia ** *** ** CNN/RNN * TensorFlow c++/cuda/python c++/python * ** * CNN/RNN/- *** 安装难度: (简单) –> **(复杂) 文档风格: (一般) –> **(好看.全面)…
1 主流深度学习框架对比 当今的软件开发基本都是分层化和模块化的,应用层开发会基于框架层.比如开发Linux Driver会基于Linux kernel,开发Android app会基于Android Framework.深度学习也不例外,框架层为上层模型开发提供了强大的多语言接口.稳定的运行时.高效的算子,以及完备的通信层和设备层管理层.因此,各大公司早早的就开始了深度学习框架的研发,以便能占领市场.当前的框架有数十种之多,主流的如下(截止到2018年11月) 显然TensorFlow是独一无…
Keras内置的预定义模型 上一节我们讲过了完整的保存模型及其训练完成的参数. Keras中使用这种方式,预置了多个著名的成熟神经网络模型.当然,这实际是Keras的功劳,并不适合算在TensorFlow 2.0头上. 当前TensorFlow 2.0-alpha版本捆绑的Keras中包含: densenet inception_resnet_v2 inception_v3 mobilenet mobilenet_v2 nasnet resnet50 vgg16 vgg19 xception 这…
随着TensorFlow发布的,还有一个models库(仓库地址:https://github.com/tensorflow/models),里面包含官方及社群所发布的一些基于TensorFlow实现的模型库,用于解决各式各样的机器学习问题. 很多任务,在其中都能找到相同或者近似功能的实现,这时候无需编程或者只要很少的编程,就可以在已有模型的基础上建立自己的人工智能应用. 而且models的更新也比较快,因为大量的社群参与者,几乎每天都有模块的更新commit. 简介 当前版本TensorFlo…
这两周我学习了北京大学曹建老师的TensorFlow笔记课程,认为老师讲的很不错的,很适合于想要在短期内上手完成一个相关项目的同学,课程在b站和MOOC平台都可以找到. 在卷积神经网络一节,课程以lenet5为例,给出了完整的代码,通过这样一个例子完成了模型构建.较大数据量的训练和测试.整个代码不复杂,架构完整,我觉得代码很干净,很优秀,所以想把之后需要实现的Alexnet等网络结构都按照这个代码的结构来改. 下面是lenet5实现,数据集依然mnist. forward.py #coding:…
最近一直在研究机器学习,看过两本机器学习的书,然后又看到深度学习,对深度学习产生了浓厚的兴趣,希望短时间内可以做到深度学习的入门和实践,因此写一个深度学习系列吧,通过实践来掌握<深度学习>和 TensorFlow,希望做成一个系列出来,加油! 学习内容包括了: 1. 小象学院的<深度学习>课程 2. TensorFlow的官方教程 3. 互联网上跟深度学习相关的教程 整个深度学习,学习的过程是通过一条主线串联起来的,这个知识结构总结的还是蛮好的. 1. 线性回归 - 线性回归是基础…
TensorFlow TensorFlow 是相对高阶的机器学习库,用户可以方便地用它设计神经网络结构,而不必为了追求高效率的实现亲自写 C++或 CUDA 代码.它和 Theano 一样都支持自动求导,用户不需要再通过反向传播求解梯度.其核心代码和 Caffe 一样是用 C++编写的,使用 C++简化了线上部署的复杂度,并让手机这种内存和CPU资源都紧张的设备可以运行复杂模型(Python 则会比较消耗资源,并且执行效率不高).除了核心代码的 C++接口,TensorFlow 还有官方的 Py…
库名称 开发语言 支持接口 安装难度(ubuntu) 文档风格 示例 支持模型 上手难易 Caffe c++/cuda c++/python/matlab *** * *** CNN ** MXNet c++/cuda python/R/Julia ** *** ** CNN/RNN * TensorFlow c++/cuda/python c++/python * ** * CNN/RNN/… *** 安装难度: (简单) –> **(复杂) 文档风格: (一般) –> **(好看.全面)…
一句话介绍: Google开源的基于数据流图的科学计算库,适用于机器学习 不局限于机器学习,但目前被大多用于机器学习等. TensorFlow计算流图的概念图 Tensor在图中流动. TensorFlow的含义 拆字释义: Tensor 张量(tf中数据的表征) flow 流动 张量在图中流动 TensorFlow的详细架构 TensorFlow基本架构 TensorFlow 大事记 deepmind团队之前用的torch. 底层api调用起来繁琐. 1.3版本加入了很多高层次的抽象api.调…
http://blog.csdn.net/Jerr__y/article/details/70471066 欢迎转载,但请务必注明原文出处及作者信息. @author: huangyongye @creat_date: 2017-04-19 前言 本例子主要介绍如何使用 TensorFlow 来一步一步构建双端 LSTM 网络(听名字就感觉好腻害的样子),并完成序列标注的问题.先声明一下,本文中采用的方法主要参考了[中文分词系列] 4. 基于双向LSTM的seq2seq字标注这篇文章.该文章用…
原文:https://github.com/aymericdamien/TopDeepLearning 项目名称 Stars 项目介绍 TensorFlow 29622 使用数据流图计算可扩展机器学习问题. Caffe 11799 Caffe是一个高效的开源深度学习框架. Neural Style 10148 Torch实现的神经网络算法. Deep Dream 9042 Deep Dream,一款图像识别工具. Keras 7502 一款Python实现的深度学习库,包括卷积神经网络.递归神经…
Tensorflow比较灵活,但是它提供的操作比较低级,于是许多封装库应运而生. slim 导入方式 import tensorflow as tf import tensorflow.contrib.slim as slim 这个库直接放在contrib模块中,不像tflearn.tflayer.keras都有自己独立的pip包和官方文档. keras 优点: 时间久远 社区活跃,文档齐全 多种后端:Theano.Tensorflow.MXNet 跨平台:不管是CPU还是GPU,不管是Tens…