如果是option2的话,答案选A. 这里节点s,从左边的选择,节点t从右边选择. 这里计算还是用以前的值,不用更新过的值.…
breath_first search 改变了原图的连接情况.…
IEEE/ACM International Conference on Advances in Social Network Analysis and Mining (ASONAM) 2014 Industry Track Call for Papers * Apologies if you received multiple copies of this CFP * Beijing China August 17-20, 2014Home Page: www.asonam2014.org F…
本文主要总结近期学习的Social Network Analysis(SNA)中的各种Centrality度量,我暂且翻译为中心度.本文主要是实战,理论方面几乎没有,因为对于庞大的SNA,我可能连门都没有入,但是我觉得这不影响我理解原理后使用他们. 本文为原创,如有不小心侵权的问题出现,请联系本人删除.本文不允许任何形式的转载!!! 一.Centrality的定义 在SNA领域的centrality是用于衡量图中节点的重要度,不同的centrlity会给相同的点给出差异很大的centrality…
IEEE/ACM International Conference on Advances in Social Network Analysis and Mining (ASONAM) 2014 Industry Track Call for Papers Beijing China August 17-20, 2014Home Page: www.asonam2014.org Full paper/short paper/extended abstract submission deadlin…
原代码仓库的地址为 Network Analysis in Python. 主要按照里面的README.md 进行操作,全部仓库有100MB以上.考虑到数据比较大,再加上我对原笔记文件有修改,建议从我用 gitee 导入的国内站点下载这个仓库:gitee 安装完conda 后安装 jupyter,最近好像有个bug, notebook 这个包5.7.6版本出了点问题,建议安装5.7.4,用下面的命令: conda install notebook=5.7.4 运行后还要按 Ctrl +Shift…
什么是社会网络分析,英文social network analysis.现在这个分析越来越时髦,也越来越显现其在社会科学的研究价值.我在2000年的时候受祝建华老师的邀请到香港城市大学作研究,接触到 了社会网络分析,但是当时没有太多的感觉,也不是太了解这种分析方法的价值,记得当时在网络上根本搜不到这方面的中文内容.记得就有一篇IBM公司用社会 网络分析研究团队建设和知识管理与创新的文章,但现在不同了,社会网络分析已经成为重要的研究思想,涉及了多个学科和研究领域,例如:数据挖掘领域.知识 管理.数…
摘要:Abstract—Complex social network analysis methods have been applied extensively in various domains including online social media, biological complex networks, etc. Complex social networks are facing the challenge of information overload. The demand…
开始学习Python,之后渐渐成为我学习工作中的第一辅助脚本语言,虽然开发语言是Java,但平时的很多文本数据处理任务都交给了Python.这些年来,接触和使用了很多Python工具包,特别是在文本处理,科学计算,机器学习和数据挖掘领域,有很多很多优秀的Python工具包可供使用,所以作为Pythoner,也是相当幸福的.如果仔细留意微博和论坛,你会发现很多这方面的分享,自己也Google了一下,发现也有同学总结了“Python机器学习库”,不过总感觉缺少点什么.最近流行一个词,全栈工程师(fu…
本节介绍循环神经网络及其优化 循环神经网络(RNN,recurrent neural network)处理序列的方式是,遍历所有序列元素,并保存一个状态(state),其中包含与已查看内容相关的信息.在处理两个不同的独立序列(比如两条不同的 IMDB 评论)之间,RNN 状态会被重置,因此,你仍可以将一个序列看作单个数据点,即网络的单个输入.真正改变的是,数据点不再是在单个步骤中进行处理,相反,网络内部会对序列元素进行遍历,RNN 的特征在于其时间步函数 Keras 中的循环层 from ker…
深度学习基础 Python 的 Keras 库来学习手写数字分类,将手写数字的灰度图像(28 像素 ×28 像素)划分到 10 个类别 中(0~9) 神经网络的核心组件是层(layer),它是一种数据处理模块,它从输入数据中提取表示,紧接着的一个例子中,将含有两个Dense 层,它们是密集连接(也叫全连接)的神经层,最后是一个10路的softmax层,它将返回一个由 10 个概率值(总和为 1)组成的数组.每个概率值表示当前数字图像属于 10 个数字类别中某一个的概率 损失函数(loss fun…
之前一篇笔记: Python机器学习笔记:不得不了解的机器学习知识点(1) 1,什么样的资料集不适合用深度学习? 数据集太小,数据样本不足时,深度学习相对其它机器学习算法,没有明显优势. 数据集没有局部相关特性,目前深度学习表现比较好的领域主要是图像/语音/自然语言处理等领域,这些领域的一个共性是局部相关性.图像中像素组成物体,语音信号中音位组合成单词,文本数据中单词组合成句子,这些特征元素的组合一旦被打乱,表示的含义同时也被改变.对于没有这样的局部相关性的数据集,不适于使用深度学习算法进行处理…
这已经是我的第四篇博客学习卷积神经网络了.之前的文章分别是: 1,Keras深度学习之卷积神经网络(CNN),这是开始学习Keras,了解到CNN,其实不懂的还是有点多,当然第一次笔记主要是给自己心中留下一个印象,知道什么是卷积神经网络,当然主要是学习Keras,顺便走一下CNN的过程. 2,深入学习卷积神经网络(CNN)的原理知识,这次是对CNN进行深入的学习,对其原理知识认真学习,明白了神经网络如何识别图像,知道了卷积如何运行,池化如何计算,常用的卷积神经网络都有哪些等等. 3,Tensor…
在我们的现实生活中,许多复杂系统都可以建模成一种复杂网络进行分析,比如常见的电力网络.航空网络.交通网络.计算机网络以及社交网络等等.复杂网络不仅是一种数据的表现形式,它同样也是一种科学研究的手段.复杂网络方面的研究目前受到了广泛的关注和研究,尤其是随着各种在线社交平台的蓬勃发展,各领域对于在线社交网络的研究也越来越火.研究生期间,本人的研究方向也是一直与复杂网络打交道,现在马上就要毕业了,写一篇博文简单介绍一下复杂网络特点以及一些有关复杂网络研究内容的介绍,希望感兴趣的博友可以一起讨论,一起学…
经过这几天的折腾,经历了Django的各种报错,翻译的内容虽然不错,但是与实际的版本有差别,会出现各种奇葩的错误.现在终于找到了解决方法:查看英文原版内容:http://djangobook.com/ 加入你使用的是CentOS系统或者Mac,默认版本是2.X,请及时更新版本到3.X 书中是这么说的: You can see that, and Python to be installed. If your system . 对于没有经验的人来说,使用python2.7 ,这是一个陷阱! Dan…
首先自我批评一下,说好的一天写一篇博客,结果不到两天,就没有坚持了,发现自己做什么事情都没有毅力啊!不能持之以恒.但是,这次一定要从写博客开始来改掉自己的一个坏习惯. 可是写博客又该写点什么呢? 反正是写给自己看的,就从梳理知识点开始吧,想想自己用python也有几年时间了,可是python相关的书籍就没有正儿八经地看过一本,相关知识点也不牢靠,经常遇到很多基础问题也要google一下, 导致自己平时工作效率也比较低,是时候好好整理一下了. <python核心编程>一直是我想看的一本书,打算趁…
python自学笔记 python自学笔记 1.输出 2.输入 3.零碎 4.数据结构 4.1 list 类比于java中的数组 4.2 tuple 元祖 5.条件判断和循环 5.1 条件判断 5.2 循环 6.使用dict和set 6.1 dict 6.2 set 7.函数的使用 7.1函数返回多个值,同时接受多个值 7.2函数参数的默认值 7.3可变参数的函数 7.4可变个数带参数名的入参 7.5参数类型组合 8.关于函数递归 9.python的高级特性 9.1切片 9.2遍历 9.3列表生…
[Python爬虫笔记][随意找个博客入门(一)] 标签(空格分隔): Python 爬虫 2016年暑假 来源博客:挣脱不足与蒙昧 1.简单的爬取特定url的html代码 import urllib.request url = "http://120.27.101.158/" response = urllib.request.urlopen(url) html = response.read() html = html.decode('utf-8'); print (html) u…
OpenCV之Python学习笔记 直都在用Python+OpenCV做一些算法的原型.本来想留下发布一些文章的,可是整理一下就有点无奈了,都是写零散不成系统的小片段.现在看 到一本国外的新书<OpenCV Computer Vision with Python>,于是就看一遍,顺便把自己掌握的东西整合一下,写成学习笔记了.更需要的朋友参考. 阅读须知: 本文不是纯粹的译文,只是比较贴近原文的笔记:         请设法购买到出版社出版的书,支持正版. 从书名就能看出来本书是介绍在Pytho…
Python学习笔记(六) Ubuntu重置root密码 Ubuntu 16.4 目录结构 Ubuntu 命令讲解 1. Ubuntu重置root密码 启动系统,显示GRUB选择菜单(如果默认系统启动过程不显示GRUB菜单,则在系统启动时需要长按[Shift]键,显示GRUB界面) 按下[e]键进入命令编辑状态,到 linux /boot/vmlinuz-....... ro recovery nomodeset 所在行,将"ro recovery nomodeset"替换为"…
[博客导航] Python相关导航 [索引]Python常用资源(从新手到大牛) [任务]Python语言程序设计.MOOC学习 [笔记]Python集成开发环境——PyCharm 2018.3下载.注册.帮助文档 [笔记]基于Python的数字图像处理 [笔记]嵩天-Python语言程序设计-完成两个简单实例 ======================= by NicoWei2018-12-4 10:07:25 =======================…
Python学习笔记,day5 一.time & datetime模块 import本质为将要导入的模块,先解释一遍 #_*_coding:utf-8_*_ __author__ = 'Alex Li' import time # print(time.clock()) #返回处理器时间,3.3开始已废弃 , 改成了time.process_time()测量处理器运算时间,不包括sleep时间,不稳定,mac上测不出来 # print(time.altzone) #返回与utc时间的时间差,以秒…
总结 机器学习(machine learning)是人工智能的一个特殊子领域,其目标是仅靠观察训练数据来自动开发程序[即模型(model)].将数据转换为程序的这个过程叫作学习(learning) 深度学习(deep learning)是机器学习的众多分支之一,它的模型是一长串几何函数,一个接一个地作用在数据上.这些运算被组织成模块,叫作层(layer).深度学习模型通常都是层的堆叠,或者更通俗地说,是层组成的图.这些层由权重(weight)来参数化,权重是在训练过程中需要学习的参数.模型的知识…
近期Python 学习笔记--一篇文入门python 作者:Pleiades_Antares(www.cnblogs.com/irischen) 写在前面的话 想学Python已经许久,一年多以前(应该是17年4月份左右开始的吧)接触了python,通读了<教孩子学编程--python语言版>(如下图),感觉迷迷糊糊好像懂了,但让我实际去做一个程序还远远不能.又因为之后一直专注学习C++,一年时间基本没有碰原来就不怎么会的Python,导致现在基本是"一窍不通"的状态.于是…
Keras是一个深度学习库,包含高效的数字库Theano和TensorFlow.是一个高度模块化的神经网络库,支持CPU和GPU. 本文学习的目的是学习如何加载CSV文件并使其可供Keras使用,如何使用Keras创建一个回归问题的神经网络模型,如何使用scikit-learn和Keras一起使用交叉验证来评估模型,如何进行数据准备以提高Keras模型的技能,如何使用Keras调整模型的网络拓扑. 前期准备之Keras的scikit-learn接口包装器 Git地址:https://github…
网上有很多关于sklearn的学习教程,大部分都是简单的讲清楚某一方面,其实最好的教程就是官方文档. 官方文档地址:https://scikit-learn.org/stable/ (可是官方文档非常详细,同时许多人对官方文档的理解和结构上都不能很好地把握,我也打算好好学习sklearn,这可能是机器学习的神器),下面先简单介绍一下sklearn. 自2007年发布以来,scikit-learn已经成为Python重要的机器学习库了,scikit-learn简称sklearn,支持包括分类,回归…
机器学习岗位的面试中通常会对一些常见的机器学习算法和思想进行提问,在平时的学习过程中可能对算法的理论,注意点,区别会有一定的认识,但是这些知识可能不系统,在回答的时候未必能在短时间内答出自己的认识,因此将机器学习中常见的原理性问题记录下来,保持对各个机器学习算法原理和特点的熟练度. 本文总结了机器学习一些面试题和笔试题,以便自己学习,当然了也为了方便大家,题目是网上找的额,如果有侵权请联系小编,还有,不喜勿喷,谢谢!!! 算法分类 下面图片是借用网友做的,很好的总结了机器学习的算法分类: 问答题…
生成式深度学习 机器学习模型能够对图像.音乐和故事的统计潜在空间(latent space)进行学习,然后从这个空间中采样(sample),创造出与模型在训练数据中所见到的艺术作品具有相似特征的新作品 使用 LSTM 生成文本 生成序列数据 用深度学习生成序列数据的通用方法,就是使用前面的标记作为输入,训练一个网络(通常是循环神经网络或卷积神经网络)来预测序列中接下来的一个或多个标记.例如,给定输入the cat is on the ma,训练网络来预测目标 t,即下一个字符.与前面处理文本数据…
神经网络模型的优化 使用 Keras 回调函数 使用 model.fit()或 model.fit_generator() 在一个大型数据集上启动数十轮的训练,有点类似于扔一架纸飞机,一开始给它一点推力,之后你便再也无法控制其飞行轨迹或着陆点.如果想要避免不好的结果(并避免浪费纸飞机),更聪明的做法是不用纸飞机,而是用一架无人机,它可以感知其环境,将数据发回给操纵者,并且能够基于当前状态自主航行.下面要介绍的技术,可以让model.fit() 的调用从纸飞机变为智能的自主无人机,可以自我反省并动…