LibTorch 自动微分】的更多相关文章

得益于反向传播算法,神经网络计算导数时非常方便,下面代码中演示如何使用LibTorch进行自动微分求导. 进行自动微分运算需要调用函数 torch::autograd::grad( outputs, // 为某个可微函数的输出 y=f(x) 中的 y inputs, // 为某个可微函数的输入 y=f(x) 中的 x grad_outputs,// 雅克比矩阵(此处计算 f'(x),故设置为1,且与x形状相同 ) retain_graph,// 默认值与 create_graph 相同,这里设置…
本文介绍了五种微分方式,最后两种才是自动微分. 前两种方法求出了原函数对应的导函数,后三种方法只是求出了某一点的导数. 假设原函数是$f(x,y) = x^2y + y +2$,需要求其偏导数$\frac{\partial f}{\partial x}$和$\frac{\partial f}{\partial y}$,以便应用于梯度下降等算法. 1.手工求导 该方法比较简单,就是自备纸笔,应用基本的求导规则,以及链式求导法则,人工求导.缺点是对于复杂函数容易出错.幸运的是,这一计算过程可由计算机…
参考:https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html#sphx-glr-beginner-blitz-autograd-tutorial-py AUTOGRAD: AUTOMATIC DIFFERENTIATION PyTorch中所有神经网络的核心是autograd包.让我们先简单地看一下这个,然后我们来训练我们的第一个神经网络.autograd包为张量上的所有操作提供自动微分.它是一个按运行定义的框架,这…
1.自动微分(AD) 作者:李济深链接:https://www.zhihu.com/question/48356514/answer/125175491来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 开源里面比较干净的Forward Mode实现应该是ceres-solver里的的Jet[1]了.文件注释里解释得很详细.Reverse Mode比较成熟的实现是Stan[3]的.Adept[2]的实现思路有点意思,速度上跟Stan差不多(Stan在对节点函数上做了更…
作者:李瞬生转摘链接:https://www.zhihu.com/question/48356514/answer/123290631来源:知乎著作权归作者所有. 实现 AD 有两种方式,函数重载与代码生成.两种方式的原理都一样,链式法则. 不难想象,任何计算都可以由第1步到第k步的序列形式,其中第 i 步计算的输入,在之前的 i-1 步中已经计算(例如编译器生成的汇编指令序列).因此,任何计算都可以看作形式如下图左侧的复合函数.微积分中的链式法则告诉我们,符合函数的导数可写作下图右侧的形式(假…
现代深度学习系统中(比如MXNet, TensorFlow等)都用到了一种技术——自动微分.在此之前,机器学习社区中很少发挥这个利器,一般都是用Backpropagation进行梯度求解,然后进行SGD等进行优化更新.手动实现过backprop算法的同学应该可以体会到其中的复杂性和易错性,一个好的框架应该可以很好地将这部分难点隐藏于用户视角,而自动微分技术恰好可以优雅解决这个问题.接下来我们将一起学习这个优雅的技术:-).本文主要来源于陈天奇在华盛顿任教的课程CSE599G1: Deep Lea…
序言:在训练一个神经网络时,梯度的计算是一个关键的步骤,它为神经网络的优化提供了关键数据.但是在面临复杂神经网络的时候导数的计算就成为一个难题,要求人们解出复杂.高维的方程是不现实的.这就是自动微分出现的原因,当前最流行的深度学习框架如PyTorch.Tensorflow等都提供了自动微分的支持,让人们只需要很少的工作就能神奇般地自动计算出复杂函数的梯度. PyTorch的autograd简介 Tensor是PyTorch实现多维数组计算和自动微分的关键数据结构.一方面,它类似于numpy的nd…
神经网络通常依赖反向传播求梯度来更新网络参数,求梯度过程通常是一件非常复杂而容易出错的事情. 而深度学习框架可以帮助我们自动地完成这种求梯度运算. Tensorflow一般使用梯度磁带tf.GradientTape来记录正向运算过程,然后反播磁带自动得到梯度值. 这种利用tf.GradientTape求微分的方法叫做Tensorflow的自动微分机制. 一,利用梯度磁带求导数 import tensorflow as tf import numpy as np # f(x) = a*x**2 +…
PyTorch 自动微分示例 autograd 包是 PyTorch 中所有神经网络的核心.首先简要地介绍,然后训练第一个神经网络.autograd 软件包为 Tensors 上的所有算子提供自动微分.这是一个由运行定义的框架,以代码运行方式定义后向传播,并且每次迭代都可以不同.从 tensor 和 gradients 来举一些例子. 1.TENSOR torch.Tensor 是包的核心类.如果将其属性 .requires_grad 设置为 True,则会开始跟踪针对 tensor 的所有操作…
PyTorch 自动微分 autograd 包是 PyTorch 中所有神经网络的核心.首先简要地介绍,然后将会去训练的第一个神经网络.该 autograd 软件包为 Tensors 上的所有操作提供自动微分.是一个由运行定义的框架,这意味着以代码运行方式定义后向传播,并且每次迭代都可以不同.从 tensor 和 gradients 来举一些例子. 1.TENSOR torch.Tensor 是包的核心类.如果将其属性 .requires_grad 设置为 True,则会开始跟踪针对 tenso…
MindSpore:自动微分 作为一款「全场景 AI 框架」,MindSpore 是人工智能解决方案的重要组成部分,与 TensorFlow.PyTorch.PaddlePaddle 等流行深度学习框架对标,旨在大幅度降低 AI 应用开发门槛,让人工智能无处不在. MindSpore 是一款支持端.边.云独立/协同的统一训练和推理框架.希望通过这款完整的软件堆栈,实现一次性算子开发.一致的开发和调试体验,以此帮助开发者实现一次开发,应用在所有设备上平滑迁移的能力. 原生支持 AI 芯片,全场景一…
技术背景 在分子动力学模拟的过程中,考虑到运动过程实际上是遵守牛顿第二定律的.而牛顿第二定律告诉我们,粒子的动力学过程仅跟受到的力场有关系,但是在模拟的过程中,有一些参量我们是不希望他们被更新或者改变的,比如稳定的OH键的键长就是一个不需要高频更新的参量.这时就需要在一次不加约束的更新迭代之后(如Velocity-Verlet算法等),再施加一次约束算法,重新调整更新的坐标,使得规定的键长不会产生较大幅度的变更. 初始化坐标参数 为了实现LINCS这一算法,我们先初始化一组随机的坐标用于测试,比…
技术背景 当前主流的深度学习框架,除了能够便捷高效的搭建机器学习的模型之外,其自动并行和自动微分等功能还为其他领域的科学计算带来了模式的变革.本文我们将探索如何用MindSpore去实现一个多维的自动微分,并且得到该多元函数的雅可比矩阵. 函数形式与雅可比矩阵形式 首先我们给定一个比较简单的z关于自变量x的函数形式(其中y和I是一些参数): \[z_{i,j}(x)=y_ix_j \] 比如我们考虑一个3*3的z,我们最终需要计算的是这样一个雅可比矩阵: \[J_z(x)= \left[ \be…
学习机器学习的同学在学习过程中会经常遇到一个问题,那就是对目标函数进行求微分,线性回归这类简单的就不说.复杂的如神经网络类那些求导过程的酸爽.像我还是那种比较粗心的人往往有十导九错,所以说自动求导就十分有必要了,本文主要介绍几种求导的方式.假设我们的函数为\(f(x,y)=x^2y+y+2\),目标是求出偏导\(\frac{\partial{f}}{\partial{x}}\)和\(\frac{\partial{f}}{\partial{y}}\).求导的方式主要分为以下几种 手动求导法(Man…
Autograd 1.深度学习的算法本质上是通过反向传播求导数,Pytorch的Autograd模块实现了此功能:在Tensor上的所有操作,Autograd都能为他们自动提供微分,避免手动计算导数的复杂过程. 2.autograd.Variable是Autograd中的核心类,它简单的封装了Tensor,并支持几乎所有Tensor操作:Tensor被封装为Variable之后,可以调用它的.backward()实现反向传播,自动计算所有的梯度. 3.Variable主要包含三个属性: data…
参考Getting Started with PyTorch Part 1: Understanding how Automatic Differentiation works 非常好的文章,讲解的非常细致. 注意这篇文章基于v0.3,其中的Variable和Tensor在后来把版本中已经合并. from torch import FloatTensor from torch.autograd import Variable # Define the leaf nodes a = Variabl…
0. 写在前面 本文将使用基于LibTorch(PyTorch C++接口)的神经网络求解器,对一维稳态对流扩散方程进行求解.研究问题参考自教科书\(^{[1]}\)示例 8.3. 目录 0. 写在前面 1. 问题描述 3. 解析解 4. 神经网络 4.1 网络结构 4.2 源项代码 4.3 训练代码 4.4 CMakeLists.txt 5. 结果处理 参考文献 1. 问题描述 一维稳态对流扩散方程为 \[\nabla \cdot \left( \vec{u}\phi \right) = \n…
  在PyTorch中,集中于所有神经网络的是autograd包.首先,我们简要地看一下此工具包,然后我们将训练第一个神经网络. autograd包为张量的所有操作提供了自动微分.它是一个运行式定义的框架,这意味着你的后向传播是由你的代码运行方式来定义的,并且每一个迭代都可以是不同的. 下面,让我们使用一些更简单的术语和例子来解释这个问题. 0x01 变量(Variable) autograd.Variable是autograd包的核心类,它封装了一个张量,并支持几乎所有在该张量上定义的操作.一…
简单介绍下python的几个自动求导工具,tangent.autograd.sympy: 在各种机器学习.深度学习框架中都包含了自动微分,微分主要有这么四种:手动微分法.数值微分法.符号微分法.自动微分法,这里分别简单走马观花(hello world式)的介绍下下面几种微分框架: sympy 强大的科学计算库,使用的是符号微分,通过生成符号表达式进行求导:求得的导数不一定为最简的,当函数较为复杂时所生成的表达式树异常复杂: autograd自动微分先将符号微分用于基本的算子,带入数值并保存中间结…
[源码解析] PyTorch 分布式(9) ----- DistributedDataParallel 之初始化 目录 [源码解析] PyTorch 分布式(9) ----- DistributedDataParallel 之初始化 0x00 摘要 0x01 综述 1.1 数据并行 1.2 DDP架构 1.2.1 分布式数据并行 1.2.2 进程 1.3 DDP 总体实现 0x02 初始化 2.1 __init__ 2.2 构建参数 2.2.1 _build_params_for_reducer…
市面上流行着各式各样的深度学习库,它们风格各异.那么这些函数库的风格在系统优化和用户体验方面又有哪些优势和缺陷呢?本文旨在于比较它们在编程模式方面的差异,讨论这些模式的基本优劣势,以及我们从中可以学到什么经验. 我们主要关注编程模式本身,而不是其具体实现.因此,本文并不是一篇关于深度学习库相互比较的文章.相反,我们根据它们所提供的接口,将这些函数库分为几大类,然后讨论各类形式的接口将会对深度学习编程的性能和灵活性产生什么影响.本文的讨论可能不只针对于深度学习,但我们会采用深度学习的例子来分析和优…
What: 就是将统计学算法作为理论,计算机作为工具,解决问题.statistic Algorithm. How: 如何成为菜鸟一枚? http://www.quora.com/How-can-a-beginner-train-for-machine-learning-contests 链接内容总结: "学习任何一门学科,framework是必不可少的东西.没有framework的东西,那是研究." -- Jason Hawk One thing is for sure; you ca…
作者:王嘉俊 王婉婷 TensorFlow 是 Google 第二代深度学习系统,今天宣布完全开源.TensorFlow 是一种编写机器学习算法的界面,也可以编译执行机器学习算法的代码.使用 TensorFlow 编写的运算可以几乎不用更改,就能被运行在多种异质系统上,从移动设备(例如手机和平板)到拥有几百台的机器和几千个 GPU 之类运算设备的大规模分布式系统. TensorFlow 降低了深度学习的使用门槛,让从业人员能够更简单和方便地开发新产品.作为Google 发布的“平台级产品”,很多…
yi作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORK TUTORIAL, PART 4 – IMPLEMENTING A GRU/LSTM RNN WITH PYTHON AND THEANO . 本文的代码github地址 在此 .这是循环神经网络教程的第四部分,也是最后一个部分.之前的博文在此, RNN概述 利用Python,Theano实现RNN…
现在机器学习逐渐成为行业热门,经过二十几年的发展,机器学习目前也有了十分广泛的应用,如:数据挖掘.计算机视觉.自然语言处理.生物特征识别.搜索引擎.医学诊断.DNA序列测序.语音和手写识别.战略游戏和机器人等方面. 翻译整理了目前GitHub上最受欢迎的28款开源的机器学习项目,以供开发者参考使用. 1. TensorFlow TensorFlow 是谷歌发布的第二代机器学习系统.据谷歌宣称,在部分基准测试中,TensorFlow的处理速度比第一代的DistBelief加快了2倍之多.具体的讲,…
1. 神经网络原理 神经网络模型,是上一章节提到的典型的监督学习问题,即我们有一组输入以及对应的目标输出,求最优模型.通过最优模型,当我们有新的输入时,可以得到一个近似真实的预测输出. 我们先看一下如何实现这样一个简单的神经网络: 输入 x = [1,2,3], 目标输出 y = [-0.85, 0.72] 中间使用一个包含四个单元的隐藏层. 结构如图: 求所需参数 w10w10 w20w20 b10b10 b20b20, 使得给定输入 x 下得到的输出 ,和目标输出 y^y^ 之间的平均均方误…
Gokula Krishnan Santhanam认为,大部分深度学习框架都包含以下五个核心组件: 张量(Tensor) 基于张量的各种操作 计算图(Computation Graph) 自动微分(Automatic Differentiation)工具 BLAS.cuBLAS.cuDNN等拓展包 . . 一.张量的理解 本节主要参考自文章<开发丨深度学习框架太抽象?其实不外乎这五大核心组件> . 1.张量的解读 张量是所有深度学习框架中最核心的组件,因为后续的所有运算和优化算法都是基于张量进…
本章简单介绍了TensorFlow的安装以及使用.一些细节需要在后续的应用中慢慢把握. TensorFlow并不仅仅局限于神经网络和机器学习,它甚至可以用于量子物理仿真. TensorFlow的优势: 可运行于诸多操作系统 提供一个叫做TF.Learn(tensorflow.contrib.learn)的简单的Python API,和Scikit-Learn兼容,可以用短短几行代码训练多种神经网络. 提供另一个叫做TF-slim(tensorflow.contrib.slim)的API,用于简化…
本文由云+社区发表 作者:腾讯技术工程 导语:最近几年来,深度学习在推荐系统领域中取得了不少成果,相比传统的推荐方法,深度学习有着自己独到的优势.我们团队在QQ看点的图文推荐中也尝试了一些深度学习方法,积累了一些经验.本文主要介绍了一种用于推荐系统召回模块的深度学习方法,其出处是Google在2016年发表于RecSys的一篇用于YouTube视频推荐的论文.我们在该论文的基础上做了一些修改,并做了线上AB测试,与传统的协同召回做对比,点击率等指标提升明显. 为了系统的完整性,在介绍主模型前,本…
书上内容太多太杂,看完容易忘记,特此记录方便日后查看,所有基础语法以代码形式呈现,代码和注释均来源与书本和案例的整理. # -*- coding: utf-8 -*- # All codes and comments from <<深度学习框架Pytorch入门与实践>> # Code url : https://github.com/zhouzhoujack/pytorch-book # lesson_1 : Basic code syntax of PT(Pytorch) im…