Optimal Marks SPOJ - OPTM(最小割)】的更多相关文章

传送门 论文<最小割模型在信息学竞赛中的应用>原题 二进制不同位上互不影响,那么就按位跑网络流 每一位上,确定的点值为1的与S连一条容量为INF的有向边.为0的与T连一条容量为INF的有向边. 其他的按给定的无向图建边,容量为1. 统计答案是从源点能到达的点(流量未达到容量)即为该位上为1的点. 需要跑多少遍根据所有权值的最高位来确定.直接跑30次TLE了. #include <bits/stdc++.h> using namespace std; inline int read(…
题意:给一张无向图,每个点有其点权,边(i,j)的cost是\(val_i\ XOR \ val_j\).现在只给出K个点的权值,求如何安排其余的点,使总花费最小. 分析:题目保证权值不超过32位整型,按每一位k上的值(0 or 1),将点分为两个集合X和Y,X中为1的点,Y为0的点.如果X中的点到Y中的边有边,表示这一点对对结果将产生贡献.用最小的费用将对象划分成两个集合,问题转化为求最小割的问题. 建图:建源点s和汇点t.从s向X中的点建容量为正无穷的边;从Y中的点向t建容量为正无穷的边,对…
题面 一个无向图,一些点有固定权值,另外的点权值由你来定. 边的值为两点的异或值,一个无向图的值定义为所有边的值之和. 求无向图的最小值 分析 每一位都互不干扰,按位处理. 用最小割算最小值 保留原图的边,容量为1 如果当前点这一位是1,就从S连向当前点,容量为∞\infty∞ 如果当前点这一位是0,就从当前点连向T,容量为∞\infty∞ 那么这样一来,分在S一边就表示选,分在T一边就表示不选.如果相邻的两点在不同的集合,中间的边就必须断掉,造成1的代价,那么刚好相当于中间的边的值. 跑一遍最…
传送门 一个无向图,每个点有点权,某些点点权确定了,某些点由你来确定,边权为两个点的异或和,要使边权和最小. 这不是一道按位做最小割的大水题么 非常开心地打了,还非常开心地以为有spj,然后非常开心地Wa了 才发现在边权和最小的条件下还要让点权和最小. 这可咋整啊,难不成要费用流. 然后悄悄搜了下题解发现了巧妙的解决方法,把原来建的图中的边权都扩大10000倍,然后在选1的地方边权再悄悄加上1 把它看成10000和1两条边的话,相当于优先考虑大边最小,大边最小的前提下小边最小,即答案. //Ac…
这道题和 BZOJ 2400 是一道题,不多讲了 CODE #include <cstdio> #include <cstring> #include <vector> #include <queue> #include <algorithm> using namespace std; typedef long long LL; template<typename T>inline void read(T &num) { ch…
You are given an undirected graph G(V, E). Each vertex has a mark which is an integer from the range [0..231 – 1]. Different vertexes may have the same mark. For an edge (u, v), we define Cost(u, v) = mark[u] xor mark[v]. Now we know the marks of som…
这题远超其他题非常靠近最小割的实际意义: 割边<=>付出代价<=>决定让两个点的值不相同,边权增加 最小割<=>点的值与s一个阵营的与s相同,与t一个阵营的与t相同 //    s1[i]:点i取值为0所带来的边权贡献+点权贡献 //        点权和=已知点权和(直接加)+最大流算出来的点权和(边权和同理) //            和直觉联系起来了! //            编号未定的点的连边情况只有两种: //            1.和已知编号的点连…
#include<stdio.h> #include<string.h> #include<queue> using namespace std; #define inf 0x3fffffff #define N 550 struct node { int u,v,w,next; }bian[N*20],ff[N*20],fk[N]; int vis[N]; int head[N],yong,dis[N],work[N]; int ans[N]; void init()…
http://www.spoj.com/problems/OPTM/ 题意: 给出一张图,点有点权,边有边权 定义一条边的权值为其连接两点的异或和 定义一张图的权值为所有边的权值之和 已知部分点的点权,自定义其余点的点权 使图的权值最小,并在此基础上使点权和最小 输出点的权值 异或——按位做 那么题目就变成了已知一些点的点权为0/1,自定义剩余点的点权0/1 使01相遇的边最少 (01相遇指的是一条边连接的两点的点权不同) 我们建立最小割模型: 先不考虑第二问 源点向已知点的点权为0的点连正无穷…
因为是异或运算,所以考虑对每一位操作.对于所有已知mark的点,mark的当前位为1则连接(s,i,inf),否则连(i,t,inf),然后其他的边按照原图连(u,v,1),(v,u,1),跑最大流求最小割.然后从s沿着有剩余流量的边dfs,把dfs到的点都与(|)上1,因为是与,所以即使操作到了已知mark的点也没关系. 考虑这样做的意义.最小割就是把总点集分割为两个点集S,T,使得所有\(u\in S,v\in T,val(u,v) \)的值最小.也就是说,在这道题中的意义就是在当前位使最少…