博弈论入门: 巴什博弈: 两个顶尖聪明的人在玩游戏,有一堆$n$个石子,每次每个人能取$[1,m]$个石子,不能拿的人输,请问先手与后手谁必败? 我们分类讨论一下这个问题: 当$n\le m$时,这时先手的人可以一次取走所有的: 当$n=m+1$时,这时先手无论取走多少个,后手的人都能取走剩下所有的: 当$n=k*(m+1)$时,对于每$m+1$个石子,先手取$i$个,后手一定能将剩下的$(m+1-i)$个都取走,因此后手必胜: 当$n=k*(m+1)+x(0<x<m+1)$时,先手可以先取$…
(一)巴什博奕(Bash Game):只有一堆n个物品,两个人轮流从这堆物品中取物,规定每次至少取一个,最多取m个.最后取光者得胜.若(m+1) | n,则先手必败,否则先手必胜.显然,如果n=m+1,那么由于一次最多只能取m个,所以,无论先取者拿走多少个,后取者都能够一次拿走剩余的物品,后者取胜.因此我们发现了如何取胜的法则:如果n=(m+1)r+s,(r为任意自然数,s≤m),那么先取者要拿走s个物品,如果后取者拿走k(≤m)个,那么先取者再拿走m+1-k个,结果剩下(m+1)(r-1)个,…
HDU.2516 取石子游戏 (博弈论 斐波那契博弈) 题意分析 简单的斐波那契博弈 博弈论快速入门 代码总览 #include <bits/stdc++.h> #define nmax 51 using namespace std; int main() { int fib[nmax]; fib[1] = fib[2] = 1; for(int i = 3;i<nmax;++i){ fib[i] = fib[i-1] + fib[i-2]; } int n; while(scanf(&…
题目描述 N个石子,A和B轮流取,A先.每个人每次最少取一个,最多不超过上一个人的个数的2倍.取到最后一个石子的人胜出,如果A要有必胜策略,第一次他至少要取多少个. 输入 第一行给出数字N,N<=10^15.第二行N个数字 输出 如题 样例输入 4 样例输出 1   根据齐肯多夫定理,任何一个正整数都能由若干个不连续的斐波那契数表示. 那么这个博弈就可以分成若干个斐波那契博弈(斐波那契博弈详见博弈论讲解). A只要第一次取走n被表示的最小斐波那契数,那么B就变成了先手.A变成了后手. 这时B无法…
题意:给定一堆石子,每个人最多取前一个人取石子数的2被,最少取一个,最后取石子的为赢家,求赢家. 思路:斐波那契博弈,这个题的证明过程太精彩了! 一个重要的定理:任何正整数都可以表示为若干个不连续的斐波那契数的和. 一.归纳法证明斐波那契数列是必败点 为了方便,我们将n记为f[i]. 1.当i=2时,先手只能取1颗,显然必败,结论成立. 2.假设当i<=k时,结论成立. 则当i=k+1时,f[i] = f[k]+f[k-1]. 则我们可以把这一堆石子看成两堆,简称k堆和k-1堆. (一定可以看成…
取石子游戏 Time Limit: 2000/1000 MS(Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 2101 Accepted Submission(s): 1205 Problem Description 1堆石子有n个,两人轮流取.先取者第1次可以取任意多个,但不能全部取完.以后每次取的石子数不能超过上次取子数的2倍.取完者胜.先取者负输出"Secondwin".先取者…
斐波纳契博弈: 有一堆个数为n的石子,游戏双方轮流取石子,满足: 1)先手不能在第一次把所有的石子取完: 2)之后每次可以取的石子数介于1到对手刚取的石子数的2倍之间(包含1和对手刚取的石子数的2倍). 约定取走最后一个石子的人为赢家,求必败态. 证明 FBI数为必败局: 1.对于任意一个FBI数 FBI[K]=FBI[K-1]+FBI[K-2],我们可以将FBI[K]看成石子数目分别是FBI[K-1],FBI[K-2]的两堆(一定可以这样分,因为FBI[K-1] > FBI[K-2]*2,若先…
题意:1堆石子有n个,两人轮流取.先取者第1次可以取任意多个,但不能全部取完.以后每次取的石子数不能超过上次取子数的2倍. 取完者胜,先取者负输出"Second win",先取者胜输出"First win". 思路:很明显这是一个斐波那契博弈,当且仅当 n 为斐波那契数时先手必败 代码: #include <iostream> using namespace std; int main() { int n; ]; f[]=; f[]=; ;i<;i…
1070 Bash游戏 V4  基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题  收藏  关注 有一堆石子共有N个.A B两个人轮流拿,A先拿.每次拿的数量最少1个,最多不超过对手上一次拿的数量的2倍(A第1次拿时要求不能全拿走).拿到最后1颗石子的人获胜.假设A B都非常聪明,拿石子的过程中不会出现失误.给出N,问最后谁能赢得比赛. 例如N = 3.A只能拿1颗或2颗,所以B可以拿到最后1颗石子. Input 第1行:一个数T,表示后面用作输入测试的数的数量…
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1070 题意: 思路: 这个是斐波那契博弈,http://blog.csdn.net/acm_cxlove/article/details/7835016,关于斐波那契博弈的介绍,可以看看这篇博客.以下的内容便是转自这篇博客. 1.当i=2时,先手只能取1颗,显然必败,结论成立. 2.假设当i<=k时,结论成立. 则当i=k+1时,f[i] = f[k]+f[k-1].…
刚开始想用sg函数做,想了半天没一点思路啊. 原来这是一个新题型,斐波那契博弈 斐波那契博弈模型:有一堆个数为 n 的石子,游戏双方轮流取石子,满足:1. 先手不能在第一次把所有的石子取完:2. 之后每次可以取的石子数介于1到对手刚取的石子数的2倍之间(包含1和对手刚取的石子数的2倍).约定取走最后一个石子的人为赢家,求必败态.  n = 2时输出second:      n = 3时也是输出second:  n = 4时,第一个人想获胜就必须先拿1个,这时剩余的石子数为3,此时无论第二个人如何…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2516 题目: Problem Description 1堆石子有n个,两人轮流取.先取者第1次可以取任意多个,但不能全部取完.以后每次取的石子数不能超过上次取子数的2倍.取完者胜.先取者负输出"Second win".先取者胜输出"First win".   Input 输入有多组.每组第1行是2<=n<2^31. n=0退出.   Output 先取者负输…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2516 Problem Description 1堆石子有n个,两人轮流取.先取者第1次可以取任意多个,但不能全部取完.以后每次取的石子数不能超过上次取子数的2倍.取完者胜.先取者负输出"Second win".先取者胜输出"First win". Input 输入有多组.每组第1行是2<=n<2^31. n=0退出. Output 先取者负输出"S…
Bash游戏V1 有一堆石子共同拥有N个. A B两个人轮流拿.A先拿.每次最少拿1颗.最多拿K颗.拿到最后1颗石子的人获胜.如果A B都很聪明,拿石子的过程中不会出现失误.给出N和K,问最后谁能赢得比赛. 比如N = 3.K = 2.不管A怎样拿,B都能够拿到最后1颗石子. Input 第1行:一个数T.表示后面用作输入測试的数的数量.(1 <= T <= 10000) 第2 - T + 1行:每行2个数N,K.中间用空格分隔.(1 <= N,K <= 10^9) Output…
题意 有一堆石子,两个顶尖聪明的人玩游戏,先取者可以取走任意多个,但不能全取完,以后每人取的石子数不能超过上个人的两倍.石子的个数是通过模方程组给出的. 题目链接 分析 斐波那契博弈有结论:当且仅当石子数为斐波那契数时,先手必败. 又因为 $n \leq 10^{15}$,在这个范围内的斐波那契数只有72个,可以预处理出来. 注意会爆long long !! #include<iostream> #include<cstdio> #define LL __int128 using…
http://acm.hdu.edu.cn/showproblem.php?pid=2516 取石子游戏 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 3248    Accepted Submission(s): 1897 Problem Description 1堆石子有n个,两人轮流取.先取者第1次可以取任意多个,但不能全部取完.…
事实上我也不知道这算是哪个类型的博弈 是在复习$NOIP$初赛的时候看到的一个挺有趣的博弈 所以就写出来分享一下 $upd \ on \ 2018.10.12$忽然发现这个其实就是$Fibonacci Nim$... 题目:有n张纸牌,A,B两人轮流按照以下规则取牌. 规则一:A先取,但是不能在第一次将纸牌全部取完,而且至少要取一张: 规则二:每次所取纸牌张数必须大于或等于1,且小于等于对手刚取的纸牌张数的两倍.取到最后一张牌者为胜者. 输入纸牌的张数n,判断A是否必胜,如果必胜,输出”win”…
https://zhuanlan.zhihu.com/p/53948422 HDU - 1848 将这篇文章认真的看了一遍 ,虽然不是很懂 ,但是脑子里有了一个模型,链接里的图 (看的顺序 是 0,1,2,3,4,5,g[i]]得出过程)换成这道题 ,完全OK #include<stdio.h> #include<string.h> int f[20],sg[1005],book[20]; /*如果拿的数量不被限制的话 ,就是nim博弈 , 当拿的数被限制以后 ,ai->ai…
题目:传送门. 有一堆个数为n(n>=2)的石子,游戏双方轮流取石子,规则如下: 1)先手不能在第一次把所有的石子取完,至少取1颗: 2)之后每次可以取的石子数至少为1,至多为对手刚取的石子数的2倍. 约定取走最后一个石子的人为赢家,求必败态. 结论:当n为Fibonacci数的时候,必败. f[i]:1,2,3,5,8,13,21,34,55,89…… 用第二数学归纳法证明: 为了方便,我们将n记为f[i]. 1.当i=2时,先手只能取1颗,显然必败,结论成立. 2.假设当i<=k时,结论成…
Fibonacci again and again Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u Submit Status Description 任何一个大学生对菲波那契数列(Fibonacci numbers)应该都不会陌生,它是这样定义的: F(1)=1; F(2)=2; F(n)=F(n-1)+F(n-2)(n>=3); 所以,1,2,3,5,8,13……就是菲波那契数列. 在…
问题: 有一堆个数为n(n>=2)的石子,游戏双方轮流取石子,规则如下: 1)先手不能在第一次把所有的石子取完,至少取1颗: 2)之后每次可以取的石子数至少为1,至多为对手刚取的石子数的2倍. 约定取走最后一个石子的人为赢家,求必败态. 结论:当n为Fibonacci数的时候,先手必败. f[i]:1,2,3,5,8,13,21,34,55,89…… 证明: 数学归纳法: 为了方便,我们将n记为f[i]. 1.当i=2时,先手只能取1颗,显然必败,结论成立. 2.假设当i<=k时,结论成立.…
我写代码找的规律:如果这个n是斐波那契数,那么它是P态,如2,3,5,8..... 找规律的代码: #include <cstdio> #include <cmath> #include <algorithm> #include <cstring> #include <utility> #include <string> #include <iostream> #include <map> #include &…
点这里去看题 n为斐波那契数时,先手败,推断方法见算法讲堂 #include<bits/stdc++.h> using namespace std; int main() { ],i,n,ct; fib[]=;fib[]=; ;i<;i++) fib[i]=fib[i-]+fib[i-]; while(scanf("%d",&n)!=EOF) { ct=; ) break; ;i<;i++) { if(fib[i]==n) { ct=;break; }…
描述: 有一堆个数为n(n>=2)的石子,游戏双方轮流取石子,规则如下: 1)先手不能在第一次把所有的石子取完,至少取1颗: 2)之后每次可以取的石子数至少为1,至多为对手刚取的石子数的2倍: 3)取走最后一个石子的人为赢家. 结论: 如果n为斐波那契数(2,3,5,8,13,21,34,55,89...),则先手必败. 证明一: 如果按原来的套路: 由于局面不仅跟当前剩余数有关,还与上次取的数有关,所以状态中需要考虑能取的数(变得没那么直观). 必败态:当剩余数为斐波那契数,且不能一次取完时:…
http://acm.hdu.edu.cn/showproblem.php?pid=2516 取石子游戏 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 6603    Accepted Submission(s): 3987 Problem Description 1堆石子有n个,两人轮流取.先取者第1次可以取任意多个,但不能全部取完.…
基本描述 有一堆个数为n的石子,游戏双方轮流取石子,满足: 先手不能再第一次把所有石子取完: 之后每次可以取的石子数介于1到对手刚取的石子数的2倍之间,包括1和对手取的石子数的2倍.  取最后石子的人为赢家. 结论 先说结论: 当且仅当n不是Fibonacci数时,先手必胜.换句话说,先手必败构成Fibonacci数列. 分析 证明需要前置技能,"Zeckendorf定理"(齐肯多夫定理),其表述为:任何正整数可以表示为若干个不连续的Fibonacci数之和. 具体证明在这篇博文中给出…
这题的证明看不太懂,日后再重做... 1070 Bash游戏 V4  基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题  收藏  关注 有一堆石子共有N个.A B两个人轮流拿,A先拿.每次拿的数量最少1个,最多不超过对手上一次拿的数量的2倍(A第1次拿时要求不能全拿走).拿到最后1颗石子的人获胜.假设A B都非常聪明,拿石子的过程中不会出现失误.给出N,问最后谁能赢得比赛. 例如N = 3.A只能拿1颗或2颗,所以B可以拿到最后1颗石子. Input 第1行:一…
尼姆博奕(Nimm Game):有三堆各若干个物品,两个人轮流从某一堆取任意多的 物品,规定每次至少取一个,多者不限,最后取光者得胜. 这种情况最有意思,它与二进制有密切关系,我们用(a,b,c)表示某种局势,首 先(0,0,0)显然是奇异局势,无论谁面对奇异局势,都必然失败.第二种奇异局势是 (0,n,n),只要与对手拿走一样多的物品,最后都将导致(0,0,0).仔细分析一 下,(1,2,3)也是奇异局势,无论对手如何拿,接下来都可以变为(0,n,n)的情 形. 计算机算法里面有一种叫做按位模…
参考博客 先讲一下Georgia and Bob: 题意: 给你一排球的位置(全部在x轴上操作),你要把他们都移动到0位置,每次至少走一步且不能超过他前面(下标小)的那个球,谁不能操作谁就输了 题解: 当n为偶数的时候,假设当每个球都相互挨着没有间隙,那么两两一组,一组中前面那个走到哪,后面那个跟上就可以了,先手必输 如果球与球之间有间隙,那么俩俩球之间的距离可以当作尼姆博弈中取石子游戏中一堆石子的石子数,用尼姆博弈判断一下就可以了 可以说先手赢不赢光和两球之间的距离有关,如果俩俩球之间的的距离…
题意:容易理解. 分析:通过枚举寻找规律,这就是做1堆或者2堆石子博弈的技巧!当为2或者3时,肯定是第二个人赢,当为4时,先去一个石子,然后当对方面临3,于是第一个人赢, 当为5时,取1时,第二个人赢,取2时也是第二个人赢...,于是为5时也是滴二个人赢...多枚举几个之后就会发现只要满足斐波拉切数列的都是第二个人赢,其它的 则是第一个人赢! 代码实现: #include<stdio.h> #include<string.h> int main() { int n,i,t1,t2,…