前言 上一篇<机器学习算法实践:决策树 (Decision Tree)>总结了决策树的实现,本文中我将一步步实现一个朴素贝叶斯分类器,并采用SMS垃圾短信语料库中的数据进行模型训练,对垃圾短信进行过滤,在最后对分类的错误率进行了计算. 与决策树分类和k近邻分类算法不同,贝叶斯分类主要借助概率论的知识来通过比较提供的数据属于每个类型的条件概率, 将他们分别计算出来然后预测具有最大条件概率的那个类别是最后的类别.当然样本越多我们统计的不同类 型的特征值分布就越准确,使用此分布进行预测则会更加准确.…
#1.使用朴素贝叶斯模型对iris数据集进行花分类 #尝试使用3种不同类型的朴素贝叶斯: #高斯分布型,多项式型,伯努利型 from sklearn import datasets iris=datasets.load_iris() from sklearn.naive_bayes import GaussianNB #高斯分布型 gnb=GaussianNB() pred=gnb.fit(iris.data,iris.target) y_pred=gnb.predict(iris.data)…
朴素贝叶斯主要用于文本分类.文本分类常见三大算法:KNN.朴素贝叶斯.支持向量机SVM. 一.贝叶斯定理 贝叶斯公式思想:利用已知值来估计未知概率.已知某条件概率,如何得到两个事件交换后的概率,也就是已知P(A|B)的情况下如何求得P(B|A). 条件概率:P(A|B)表示事件B已经发生的前提下,事件A发生的概率,叫做事件B发生下事件A的条件概率.基本求解公式: 现实中通常遇到这种情况:可以很容易直接得出P(A|B),而P(B|A)则很难直接得出,但我们更关心P(B|A),贝叶斯公式就是干这个用…
在<机器学习---朴素贝叶斯分类器(Machine Learning Naive Bayes Classifier)>一文中,我们介绍了朴素贝叶斯分类器的原理.现在,让我们来实践一下. 在这里,我们使用一份皮马印第安女性的医学数据,用来预测其是否会得糖尿病.文件一共有768个样本,我们先剔除缺失值,然后选出20%的样本作为测试样本. 文件下载地址:https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-d…
1.(1)多项式 from sklearn.datasets import load_iris iris = load_iris() from sklearn.naive_bayes import GaussianNB#贝叶斯 gnb = GaussianNB() pred = gnb.fit(iris.data,iris.target) y_pred = pred.predict(iris.data)#预测 print(iris.data.shape[0],(iris.target!=y_pr…
1.朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法, 最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Bayesian Model,NBM) 2.朴素贝叶斯公式 P(B|A)的意思是在A事件的情况下,发生B事件的概率. 3.朴素贝叶斯模型 a是独立的特征属性集合: 用来计算不同的独立特征的条件概率…
网易公开课,第5,6课 notes,http://cs229.stanford.edu/notes/cs229-notes2.pdf 前面讨论了高斯判别分析,是一种生成学习算法,其中x是连续值 这里要介绍第二种生成学习算法,Naive Bayes算法,其中x是离散值的向量 这种算法常用于文本分类,比如分类垃圾邮件 首先,如何表示一个文本,即x? 以上面这种向量来表示,字典中的词是否在该文本中出现 其中每个词,可以看作是一个特征,对于特征的选取,可以过滤到stop word,或只选取出现多次的值.…
3--朴素贝叶斯 原理 朴素贝叶斯本质上就是通过贝叶斯公式来对得到类别概率,但区别于通常的贝叶斯公式,朴素贝叶斯有一个默认条件,就是特征之间条件独立. 条件概率公式: \[P(B|A) = \frac{P(A|B)P(B)}{P(A)} \] 贝叶斯公式可以写成: \[p(y_i|x) = \frac{p(x|y_i)p(y_i)}{p(x)} \] 如果A和B相对于C是条件独立的,那么满足\(P(A|C) = P(A|B,C)\). 如果样本的两个特征\(x_1\)\(x_2\)相对于y条件独…
作者: 寒小阳 && 龙心尘 时间:2016年2月. 出处:http://blog.csdn.net/han_xiaoyang/article/details/50629608 http://blog.csdn.net/longxinchen_ml/article/details/50629613 声明:版权所有,转载请联系作者并注明出处 1.引言 前两篇博文介绍了朴素贝叶斯这个名字读着"萌蠢"但实际上简单直接高效的方法,我们也介绍了一下贝叶斯方法的一些细节.按照老规矩…
http://blog.csdn.net/han_xiaoyang/article/details/50629608 作者: 寒小阳 && 龙心尘 时间:2016年2月. 出处:http://blog.csdn.net/han_xiaoyang/article/details/50629608 http://blog.csdn.net/longxinchen_ml/article/details/50629613 声明:版权所有,转载请联系作者并注明出处 1.引言 前两篇博文介绍了朴素贝叶…