题解 Dinic求最小割 题目其实就是求最小的代价使得每个纵轴被分成两部分 最小割!!! 我们把每个点抽象成一条边,一个纵轴就是一条\(S-T\)的路径 但是题目要求\(|f(x,y)-f(x',y')| ≤D\) 不能直接跑最小割 考虑如何限制 首先,\(|f(x,y)-f(x',y')| ≤D\)是相互的 所以只要考虑 \(f(x,y)-f(x',y')\leq D\) 限制想一想看代码就明白了 代码就很简洁了 Code #include<bits/stdc++.h> #define LL…
题目大意:有一个$n\times m$的切糕,每一个位置的高度可以在$[1,k]$之间,每个高度有一个代价,要求四联通的两个格子之间高度最多相差$D$,问可行的最小代价.$n,m,k,D\leqslant 40$ 题解:网络流,不考虑相差为$D$的条件时,可以给每个位置建一个点,源点连向高度为$1$的点容量为$\infty$,高度为$i$的点连向这个位置高度为$i+1$的点,容量为代价,高度为$k$的连向汇点,容量为代价.跑最小割. 考虑相差为$D$的条件,可以对于相邻的两个点$A,B$,连接$…
首先推荐一个写的很好的题解,个人水平有限只能写流水账,还请见谅. 经典的最小割模型,很多人都说这个题是水题,但我还是被卡了=_= 技巧:加边表示限制 在没有距离\(<=d\)的限制时候,我们对每个竖轴连一条完整的边跑最小割即可(效果和取\(min\)是一样的).但是现在需要加入这个限制,我们就要考虑加边. 原条件:\(|x - y| <= d\) 转化为:\(x - y <= d\) 且 \(y - x <= d\) 我们考虑对每一个不等式单独处理,实际上可以转化为: 对于每一个\…
正解:网络流 解题报告: 传送门! 日常看不懂题系列,,,$QAQ$ 所以先放下题目大意趴$QwQ$,就说有个$p\cdot q$的矩阵,每个位置可以填一个$[1,R]$范围内的整数$a_{i,j}$,要求相邻格子之间差不超过$D$.求$\sum v_{i,j,a_{i,j}}$的$min$ 昂,先考虑如果没有$D$这个限制网络流怎么做鸭$QwQ$.就一个,比较显然的最小割,对每个位置$(i,j)$开一行点连起来,第$k$个点和第$k+1$个点之间的流量为$v_{i,j,k+1}$,切开就表示这…
bzoj3144 [HNOI2013]切糕(最小割) bzoj Luogu 题面描述见上 题解时间 一开始我真就把这玩意所说的切面当成了平面来做的 事实上只是说相邻的切点高度差都不超过 $ d $ 对于一条 $ z $ 轴方向的线,把原题的点看成边,每个原题的点两端看成两个点就好(就是说一条线上有 $ r+1 $ 个点 $ r $ 条边),底端每一个点有一条由 $ S $ 连向它的不能断开( $ inf $ )的边,顶端每个点同理连向 $ T $ 之后考虑处理相邻两点之间高度差不超过 $ d $…
3144: [Hnoi2013]切糕 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 681  Solved: 375[Submit][Status] Description Input 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R个P行Q列的矩阵,第z个 矩阵的第x行第y列是v(x,y,z) (1≤x≤P, 1≤y≤Q, 1≤z≤R). 100%的数据满足P,Q,R≤40,0≤D≤…
[BZOJ3144][Hnoi2013]切糕 Description Input 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R个P行Q列的矩阵,第z个 矩阵的第x行第y列是v(x,y,z) (1≤x≤P, 1≤y≤Q, 1≤z≤R). 100%的数据满足P,Q,R≤40,0≤D≤R,且给出的所有的不和谐值不超过1000. Output 仅包含一个整数,表示在合法基础上最小的总不和谐值. Sample Input 2 2 2 1 6…
洛谷 题意: 给出一个无向图,之后有\(q,q\leq 30\)组询问,每组询问有一个\(x\),回答有多少点对\((a,b)\)其\(a-b\)最小割不超过\(x\). 思路: 这个题做法要最小割树...这个东西大概就是对于当前点集任意选择两个点\(s,t\)作为源点和汇点,然后求出当前最小割,之后两个集合连边为最小割权值:然后两个集合递归下去处理. 显然最后集合中只会存在一个元素,那么最后形成的就是一颗树. 最小割树有一个性质:对于树上\(u,v\)两点,其路径上的边权最小值即为两点的最小割…
题目描述 输入 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R个P行Q列的矩阵,第z个 矩阵的第x行第y列是v(x,y,z) (1≤x≤P, 1≤y≤Q, 1≤z≤R). 100%的数据满足P,Q,R≤40,0≤D≤R,且给出的所有的不和谐值不超过1000. 输出 仅包含一个整数,表示在合法基础上最小的总不和谐值. 样例输入 2 2 2 1 6 1 6 1 2 6 2 6 样例输出 6 提示 最佳切面的f为f(1,1)=f(2,1)…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3144 一根纵轴上切一个点,可以把一根纵轴上的点连成一串来体现.自己的写法是每个点连向前一个点的边上放着权值. 相邻位置高度的限制可以在两条链之间连边来体现:自己的高度是 i 的话,自己向旁边的 i-D-1 连边,这样切了自己就必须切旁边 i-D 及其后的点:旁边的 i+D 向自己连边,这样切了自己就必须切旁边 i+D 及其前的点.这样就能限制住了. 似乎可以只连一条,令一条在做到对方的时候…
洛谷P4014 分配问题[最小/大费用流]题解+AC代码 题目描述 有 n 件工作要分配给 n 个人做.第 i 个人做第 j 件工作产生的效益为c ij. 试设计一个将 n 件工作分配给 n 个人做的分配方案,使产生的总效益最大. 输入格式: 文件的第 1 行有 1 个正整数 n,表示有 n 件工作要分配给 n 个人做.接下来的 n 行中,每行有 n 个整数c ij,表示第 i 个人做第 j 件工作产生的效益为c ij . 输出格式: 两行分别输出最小总效益和最大总效益. 输入样例 5 2 2…
题目链接 每层每个位置向下一层这个位置连边,流量为下一层这个位置的\(f\),源点向第一层连,流量第一层每个位置的费用,最后一层向汇点连,流量\(INF\). 这样就得到了\(P*Q\)条链,不考虑\(D\)的限制的话求最小割就是答案. 现在加入限制.记结论吧,我也不知道什么原理 每个位置从\(i=D+1\)层开始,向他前后左右第\(i-D\)层连边,流量\(INF\). 然后求出最小割即为答案. #include <cstdio> #include <queue> #includ…
题目描述 经过千辛万苦小 A 得到了一块切糕,切糕的形状是长方体,小 A 打算拦腰将切糕切成两半分给小 B.出于美观考虑,小 A 希望切面能尽量光滑且和谐.于是她找到你,希望你能帮她找出最好的切割方案. 出于简便考虑,我们将切糕视作一个长 P.宽 Q.高 R 的长方体点阵.我们将位于第 z层中第 x 行.第 y 列上(1≤x≤P, 1≤y≤Q, 1≤z≤R)的点称为(x,y,z),它有一个非负的不和谐值 v(x,y,z).一个合法的切面满足以下两个条件: 与每个纵轴(一共有 P*Q 个纵轴)有且…
最小割模板. 题意:你要在一个三维点阵的每个竖条中删去一个点,使得删去的点权和最小. 且相邻(四联通)的两竖条之间删的点的z坐标之差的绝对值不超过D. 解: 首先把这些都串起来,点边转化,就变成最小割了对吧. 那么限制条件怎么处理呢? 我们知道在最小割中流量为INF的边是割不断的,以此来连边,使得相邻的割点超过D不合法. 具体来说:把相邻的两条链中,差距刚好为D的点连起来.从上往下连INF. 这是D = 1的一个连边实例. 可以发现,我们割两个在同一高度的边是没问题的. 如果高度相差1也没问题.…
问题描述 BZOJ3144 LG3227 还想粘下样例 输入: 2 2 2 1 6 1 6 1 2 6 2 6 输出: 6 题解 关于离散变量模型,我不想再抄一遍,所以: 对于样例,可以建立出这样的图 这是一个最小割模型,哪条边满流就代表在这个位置选择了哪个值. 网络流的主要思想就是通过点互化,将限制条件在边上体现出来. 所以比 \([1,r]\) 要再多建立一个点,但是最后增加的一层不能建立横向边 . \(\mathrm{Code}\) #include<bits/stdc++.h> usi…
题目描述 经过千辛万苦小 A 得到了一块切糕,切糕的形状是长方体,小 A 打算拦腰将切糕切成两半分给小 B.出于美观考虑,小 A 希望切面能尽量光滑且和谐.于是她找到你,希望你能帮她找出最好的切割方案. 出于简便考虑,我们将切糕视作一个长 P.宽 Q.高 R 的长方体点阵.我们将位于第 z层中第 x 行.第 y 列上(1≤x≤P, 1≤y≤Q, 1≤z≤R)的点称为(x,y,z),它有一个非负的不和谐值 v(x,y,z).一个合法的切面满足以下两个条件: 与每个纵轴(一共有 P*Q 个纵轴)有且…
3144: [Hnoi2013]切糕 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1261  Solved: 700[Submit][Status][Discuss] Description Input 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R个P行Q列的矩阵,第z个 矩阵的第x行第y列是v(x,y,z) (1≤x≤P, 1≤y≤Q, 1≤z≤R). 100%的数据满足P,Q…
传送门 好的一道最小表示法的裸板,感觉跑起来贼快(写博客时评测速度洛谷第二),这里简单讲讲最小表示法的实现. 首先我们将数组复制一遍接到原数组队尾,然后维护左右指针分别表示两个即将进行比较的字符串的头尾.然后开始逐位比较,当两个字串同一位置的字符不同时,相对来说字符值较大的指针跳到失配下标的后面一位,如果此时两个指针重合,将其中一个加一.边界条件:两个指针中有一个值大于原数组长度. 代码如下: #include<bits/stdc++.h> #define N 300005 using nam…
洛谷题目链接:[HNOI2013]数列 题目描述 小T最近在学着买股票,他得到内部消息:F公司的股票将会疯涨.股票每天的价格已知是正整数,并且由于客观上的原因,最多只能为N.在疯涨的K天中小T观察到:除第一天外每天的股价都比前一天高,且高出的价格(即当天的股价与前一天的股价之差)不会超过M,M为正整数.并且这些参数满足M(K-1)<N.小T忘记了这K天每天的具体股价了,他现在想知道这K天的股价有多少种可能 输入输出格式 输入格式: 只有一行用空格隔开的四个数:N.K.M.P.对P的说明参见后面&qu…
题目描述 «问题描述: 给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V 中每个顶点恰好在P 的一条路上,则称P是G 的一个路径覆盖.P 中路径可以从V 的任何一个顶点开始,长度也是任意的,特别地,可以为0.G 的最小路径覆盖是G 的所含路径条数最少的路径覆盖.设计一个有效算法求一个有向无环图G 的最小路径覆盖.提示:设V={1,2,.... ,n},构造网络G1=(V1,E1)如下: 每条边的容量均为1.求网络G1的( 0 x , 0 y )最大流. «编程任务:…
洛谷题面传送门 大概是一个比较 trivial 的小 trick?学过了就不要忘了哦( 莫名奇妙地想到了 yyq 的"hot tea 不常有,做过了就不能再错过了" 首先看到这种二维问题我们可以很自然地想到将它们映射到一个二维平面上,即我们将 \(\sum\limits_{e\in E}a_e\) 看作横坐标 \(x\),将 \(\sum\limits_{e\in E}b_e\) 看作纵坐标 \(y\),那么我们所求即是全部生成树表示的点当中横纵坐标之积最大的点.显然这些点肯定都在所有…
%%ZZKdalao上课讲的题目,才知道网络流的这种玄学建模 我们先想一想,如果没有D的限制,那么想当于再每一根纵轴上选一个权值最小的点再加起来 我们对应在网络流上就是每一根纵轴上的点向它下方的点用权值当边值进行连边,然后要割掉一些边,代价最小就是求最小割 然后我们考虑限制,就是如果割了某一根数轴上高度为x的点,那么所有与它相邻的纵轴都只能割高度为[x-d,x+d]的点 这个时候我们就要知道一个常用技巧:在求最小割时,我们可以把那些无法割去的边边权设为INF 因此我们在建边时,由纵轴上一度为x的…
题意: 一个矩阵,每个格子分配一个数,不同的数字,代价不同,要求相邻格子数字差小等于d 求最小代价. 分析: 我猜肯定有人看题目就想到最小割了,然后一看题面理科否决了自己的这个想法…… 没错,就是最小割…… 你是否还记得,在第一篇网络流题解中,我们了解了网络流最重要的是“限制”二字. 我们在这道题中,先把限制放宽,考虑在不限制编号差小于等于d的情况下,怎么办? 我们俯视这个立方体,把每个位置的所有层的点由下到上连起来,变成P*Q个点串,底面上所有的点连源点,顶面上所有点连汇点,权值反应在边上,求…
题目链接 嗯,毒瘤题. 首先有一个结论,就是最小矩形一定有条边和凸包重合.脑补一下就好了. 然后枚举凸包的边,用旋转卡壳维护上顶点.左端点.右端点就好了. 上顶点用叉积,叉积越大三角形面积越大,对应的高也就越大.两边的点用点积,点积越大投影越大. 然后就是精度问题.这种实数计算最好不要直接用比较运算符,要用差和\(eps\)的关系来比较,我就是一直卡在这里.还好有爆炸\(OJ\)离线题库提供的数据... #include <cstdio> #include <cmath> #inc…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3144 每个点拆成 R 个,连成一条链,边上是权值,割掉代表选这一层: 然后每个点的第 t 层向四周的点的第 t-d 层连边,就能达到选了第 i 条边,则四周的点必须选 i-d ~ T 范围的边,而对方反过来一连,就限制在 i-d ~ i+d 了: 竟然因为忘记 ct=1 而调了一小时呵呵... 代码如下: #include<cstdio> #include<cstring>…
传送门 所以说我讨厌数学……期望不会高斯消元也不会……好不容易抄好了高斯消元板子被精度卡成琪露诺了…… 首先,我们先算出走每一条边的期望次数,那么为了最小化期望,就让大的期望次数乘上小编号 边的期望次数是多少呢?可以先算出点的概率 $p(u,v)=\frac{p[u]}{d[u]}+\frac{p[v]}{d[v]}$ $p[u]$表示经过这个点的期望次数,$d[u]$表示这个点的度数 那么点的期望次数怎么求? $p[u]=\sum_{(u,v)\in E}\frac{p[v]}{d[v]}$…
s向仓库i连ins(s,i,a[i],0),商店向t连ins(i+m,t,b[i],0),商店和仓库之间连ins(i,j+m,inf,c[i][j]).建两次图分别跑最小费用最大流和最大费用最大流即可. #include<iostream> #include<cstdio> #include<queue> #include<cstring> using namespace std; const int N=1000005,inf=1e9; int n,m,h…
其实KM更快--但是这道题不卡,所以用了简单粗暴的费用流,建图非常简单,s向所有人连流量为1费用为0的边来限制流量,所有工作向t连流量为1费用为0的边,然后对应的人和工作连(i,j,1,cij),跑一遍最小费用最大流再跑一遍最大费用最大流即可.方便起见直接重建图了. #include<iostream> #include<cstdio> #include<queue> #include<cstring> using namespace std; const…
有一个无向简单连通图,顶点从 \(1\) 编号到 \(n\),边从 \(1\) 编号到 \(m\) 小Z在该图上进行随机游走,初始时小Z在\(1\)号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分数.当小Z 到达\(n\)号顶点时游走结束,总分为所有获得的分数之和. 现在,请你对这\(m\)条边进行编号,使得小Z获得的总分的期望值最小. 也是一个图上随机游走的模型,但这次问题在于不能直接算出答案 我们仍然按照以前的套路,设\(x_i\)…
题目链接:https://www.luogu.org/problem/P2604 题目描述 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用.求: 1. 在不扩容的情况下,1到N的最大流: 2. 将1到N的最大流增加K所需的最小扩容费用. 解题思路: 1.对于1,直接跑一遍最大流即可, 费用设为 0 . 2.对于2,在跑完最大流后的残留网络上加边,对每条边加上容量为 inf, 费用为边的扩容费用.这样保证费用是正确的,为了保证扩容为k,加一个源点0,容…