题目描述 求$\sum\limits_{i=1}^n\sum\limits_{j=1}^m|\mu(gcd(i,j))|lcm(i,j)$,即$gcd(i,j)$不存在平方因子的$lcm(i,j)$之和. 输入 一个正整数T表示数据组数 接下来T行 每行两个正整数 表示N.M 输出 T行 每行一个整数 表示第i组数据的结果 样例输入 4 2 4 3 3 6 5 8 3 样例输出 24 28 233 178 题解 莫比乌斯反演+线性筛 (为了方便,以下公式默认$n\le m$) $\ \ \ \…
题意:求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m lcm(i,j)\ : gcd(i,j) 是sf 无平方因子数\) 无平方因子数?搞一个\(\mu(gcd(i,j))\)不就行了..不对不对有正负,是\(\mu^2\)才行 套路推♂倒 (ノ*・ω・)ノ \[ \begin{align*} \sum\limits_{i=1}^n \sum\limits_{j=1}^m \frac{ij}{gcd(i,j)} \mu(gcd(i,j))^2 &=\sum_…
题目描述 输入 一个正整数T表示数据组数 接下来T行 每行两个正整数 表示N.M 输出 T行 每行一个整数 表示第i组数据的结果 样例输入 1 4 5 样例输出 122 题解 莫比乌斯反演+线性筛 由于要处理多组询问,所以 bzoj2154 的做法就不好用了,但是这个结论可以套用过来. 然后推公式: (UPD:上面公式最后一行请自行把 $k$ 改成 $n$ ... 由于这里是图片形式就不改了) 设f1(n)=n2mu(n),f2(n)=n,则显然f2是积性函数,f1为两个积性函数的乘积,也是积性…
题目描述 给下N,M,K.求 输入 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行,每行为两个正整数N,M,其意义如上式所示. 输出 如题 样例输入 1 2 3 3 样例输出 20 题解 莫比乌斯反演+线性筛 $\sum\limits_{i=1}^n\sum\limits_{j=1}^m\gcd(i,j)^k\\=\sum\limits_{d=1}^{\min(n,m)}d^k\sum\limits_{i=1}^n\sum\limits…
4407: 于神之怒加强版 Time Limit: 80 Sec  Memory Limit: 512 MBSubmit: 241  Solved: 119[Submit][Status][Discuss] Description 给下N,M,K.求 Input 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行,每行为两个正整数N,M,其意义如上式所示. Output 如题 Sample Input 1 23 3 Sample Outpu…
一通正常的莫比乌斯反演后,我们只需要求出g(n)=Σf(d)*μ(n/d)的前缀和就好了. 考虑怎么求g(n).当然是打表啊.设n=∏piai,n/d=∏pibi .显然若存在bi>1则这个d没有贡献.考虑bi为0和1两种情况.如果只看ai最小的质因子的选取情况,会发现大部分情况下其是0还是1,对f的取值是没有影响的,但会使μ取反,于是就抵消为0.而特殊情况即为所有ai均相同,此时若所有bi都取1会使f减少.与一般情况比较可以得到此时g(n)=(-1)质因子个数+1. 然后就可以线性筛了.记录一…
既然已经学傻了,这个题当然是上反演辣. 对于求积的式子,考虑把[gcd=1]放到指数上.一通套路后可以得到∏D∏d∏i∏j (ijd2)μ(d) (D=1~n,d|D,i,j=1~n/D). 冷静分析一下,由μ*1=e,后面一串ij相关的式子仅当D=1时有贡献.这一部分就非常好算了.而d对某个D的贡献,容易发现是d2μ(d)*(n/D)^2.设f(D)=∏dμ(d) (d|D),这个式子是可以线性筛的.(事实上从莫比乌斯函数的性质上看好像也很可以求,然而已经不会了)筛完之后就可以愉快的整除分块了…
最近重新系统地学了下这几个知识点,以前没发现他们的联系,这次总结一下. 莫比乌斯反演入门:https://blog.csdn.net/litble/article/details/72804050 线性筛筛常见积性函数及其代码:https://blog.masterliu.net/algorithm/sieve/ 积性函数与线性筛(包括普通线性函数):https://blog.csdn.net/weixin_42562050/article/details/87997582 bzoj2154/b…
Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必然不会了,于是向你来请教……多组输入 Input 第一行一个整数T 表述数据组数接下来T行,每行两个正整数,表示N, M Output T行,每行一个整数表示第i组数据的结果 Sample Input 2 10 10 100 100 Sample Output 30 2791 HINT T = 10000 N…
Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007)=1, f(1)=0. 给定正整数a,b,求sigma(sigma(f(gcd(i,j)))) (i=1..a, j=1..b). Input 第一行一个数T,表示询问数. 接下来T行,每行两个数a,b,表示一个询问. Output 对于每一个询问,输出一行一个非负整数作为回答. Sample Input 4 7558588 9653114…