题目传送门 题目大意: 给定一个素数p,让你重载加法运算和乘法运算,使(m+n)p=mp+np,并且 存在一个小于p的q,使集合{qk|0<k<p,k∈Z} 等于集合{k|0<k<p,k∈Z}. 然后输出两个矩阵,第一个矩阵输出i+j的值,第二个矩阵输出i*j的值.(题意好难懂,你们怎么都看懂了!!) 思路: 由费马小定理得到,当p是质数的时候,ap-1 ≡ 1(mod p),两边同乘以a,也就是说当ap和a在取模p的时候相等 所以(m+n)p=m+n=mp+np(乘法为x*x%p…
目录 Catalog Solution: (有任何问题欢迎留言或私聊 && 欢迎交流讨论哦 Catalog Problem:Portal传送门  原题目描述在最下面.  给定一个素数p,要求定义一个加法运算表和乘法运算表,使的\((m+n)^p=m^p+n^p(0≤m, n<p)\)成立. Solution:  费马小定理:\(a^{p-1} = 1 mod p(p是素数)\)  所以 \(a^p \;mod\; p = a^{p-1} \times a \;mod \;p = a…
题意: 给定素数p,定义p内封闭的加法和乘法,使得$(m+n)^p=m^p+n^p$ 思路: 由费马小定理,p是素数,$a^{p-1}\equiv 1(mod\;p)$ 所以$(m+n)^{p}\equiv (m+n)(mod\;p)$ $m^{p}\equiv m(mod\;p)$ $n^{p}\equiv n(mod\;p)$ 所以在模意义下,有$(m+n)^p=m^p+n^p$ 代码: #include<iostream> #include<cstdio> #include&…
解题思路:给定素数p,定义p内封闭的加法和乘法运算(运算封闭的定义:若从某个非空数集中任选两个元素(同一元素可重复选出),选出的这两个元素通过某种(或几种)运算后的得数仍是该数集中的元素,那么,就说该集合对于这种(或几种)运算是封闭的.),使得等式$(m+n)^p = m^p + n^p(0 \leq m,n<p) $恒成立. 由费马小定理可得$(m+n)^p\equiv(m+n)(mod\;p)$,则$m^p + n^p \equiv(m+n)(mod\;p)$. ∴在模p的意义下,$ (m+…
求:$a^{bx \%p}\equiv 1(\mod p)$ 的一个可行的 $x$. 根据欧拉定理,我们知道 $a^{\phi(p)}\equiv 1(\mod p)$ 而在 $a^x\equiv 1(\mod p)$ 这个式子中 $x$ 是存在很多个解的. 这些解之间存在着循环节,使得任意解 $x$ 可以被表示成循环节的倍数. 我们设这个循环节为 $cir$. 由于已知 $\phi(p)$ 一定是一个可行解,所以最小循环节一定是 $\phi(p)$ 的约数. 然后我们就可以对 $\phi(p)…
There are N children in kindergarten. Miss Li bought them N candies. To make the process more interesting, Miss Li comes up with the rule: All the children line up according to their student number (1...N), and each time a child is invited, Miss Li r…
题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=6440 这题主要是理解题意: 题意:定义一个加法和乘法,使得 (m+n)p = mp+np; 其中给定 p 为素数,m,n 为小于p的数: 费马小定理:am-1 ≡ 1(mod p); 故有 am ≡ a(mod p), 同理(a+b)m = a+b(mod p) = am + bm ; 所以原等式恒成立,不需要定义特别的加法和乘法,只需在原来的基础上取模即可: #include<iostream>…
G. Give Candies There are N children in kindergarten. Miss Li bought them N candies. To make the process more interesting, Miss Li comes up with the rule: All the children line up according to their student number (1...N) and each time a child is inv…
                                                10200 - Prime Time 此题极坑(本菜太弱),鉴定完毕,9遍过. 题意:很简单的求一个区间[a,b]内满足i*i+i+41(i>=a&&i<=b,0<=a<=b<=10000.)是素数的数有多个,求出百分比. 思路:直接裸判就行了(竟然不超时),但结果要加上1e-8(are you kidding me?). 下面来说说我怎么跪了,开始也是直接裸判,我…
题意: 给n(1<n<),求(s1+s2+s3+...+sn)mod(1e9+7).其中si表示n由i个数相加而成的种数,如n=4,则s1=1,s2=3.                         (全题文末) 知识点: 整数n有种和分解方法. 费马小定理:p是质数,若p不能整除a,则 a^(p-1) ≡1(mod p).可利用费马小定理降素数幂. 当m为素数,(m必须是素数才能用费马小定理) a=2时.(a=2只是题中条件,a可以为其他值) mod m =  *      //  k=…