caffe(9) caffe例子】的更多相关文章

caffe机器学习环境搭建及python接口编译参见我的上一篇博客:机器学习caffe环境搭建--redhat7.1和caffe的python接口编译 1.运行caffe图片分类器python接口 还是假设caffe的源码下载的路径为:/code,那么有这么个文件/code/caffe/python/classify.py,它是caffe团队提供的一个python实现的图片分类器的接口.运行该接口有两个必须参数,一个是你要操作的图片,另一个就是保存运行结果的文件.但是该接口需要简单修改才能运行,…
在搭建caffe的环境时出现错误: .build_release/src/caffe/proto/caffe.pb.h:23:35: fatal error: google/protobuf/arena.h: 没有那个文件 错误原因,在caffe安装之前安装了annoconda3.6的版本,版本中自带了protobuf3.x版本,对caffe的编译环境产生了影响 解决办法:重新下载protobuf2.x版本,在Makefile文件中进行相关的设置即可…
You need to generate caffe.pb.h manually using protoc as follows. # In the directory you installed Caffe to protoc src/caffe/proto/caffe.proto --cpp_out=. mkdir include/caffe/proto mv src/caffe/proto/caffe.pb.h include/caffe/proto…
caffe编译过程中遇到的为问题: fatal error: caffe/proto/caffe.pb.h: No such file or directory 解决方法: 用protoc从caffe/src/caffe/proto/caffe.proto生成caffe.pb.h和caffe.pb.cc,先进入your_path/include/caffe目录下新建文件夹,命名为proto. protoc --cpp_out=your_path/caffe-master/include/caff…
01-learning-Lenet, 主要讲的是 如何用python写一个Lenet,以及用来对手写体数据进行分类(Mnist).从此教程可以知道如何用python写prototxt,知道如何单步训练网络,以及采用单步训练的方法来获取每一步训练的loss和accuracy,用来绘制曲线图. 其实并没有官方教程一说,只是在caffe/example/下有 00-classification.ipynb: 01-learning-lenet.ipynb: 02-fine-tuning.ipynb:…
00-classification 主要讲的是如何利用caffenet(与Alex-net稍稍不同的模型)对一张图片进行分类(基于imagenet的1000个类别) 先说说教程到底在哪(反正我是找了半天也没发现...) 其实并没有官方教程一说,只是在caffe/example/下有 00-classification.ipynb: 01-learning-lenet.ipynb: 02-fine-tuning.ipynb: 等等一些列 ipython notebook文件,里面就是一些examp…
最近打算看一看caffe实现的源码,因为发现好多工作都是基于改动网络来实现自己的的目的.比如变更目标函数以及网络结构,以实现图片风格转化或者达到更好的效果. 深度学习框架 https://mp.weixin.qq.com/s?__biz=MzI1NTE4NTUwOQ==&mid=2650325746&idx=1&sn=378e1adc20bb9f4e388e1bd648707026&chksm=f235a5f8c5422ceee84aa4dff2b5c025397e3a42…
为了程序的简洁,在caffe中是不带练习数据的,因此需要自己去下载.但在caffe根目录下的data文件夹里,作者已经为我们编写好了下载数据的脚本文件,我们只需要联网,运行这些脚本文件就行了. 注意:在caffe中运行所有程序,都必须在根目录下进行,否则会出错 1.mnist实例 mnist是一个手写数字库,由DL大牛Yan LeCun进行维护.mnist最初用于支票上的手写数字识别, 现在成了DL的入门练习库.征对mnist识别的专门模型是Lenet,算是最早的cnn模型了. mnist数据训…
@tags caffe 照例还是转写为python脚本: import os caffe_root=os.environ['caffe_root'] caffe_build=os.environ['caffe_build'] cmd1=caffe_build+"\\caffe.exe train --solver="+caffe_root+"\\examples\\cifar10\\cifar10_quick_solver.prototxt" print cmd1…
caffe.bin :command line brew usage : caffe  <command><args> commands: train:  训练或者微调一个网络 test: 对一个模型打分测试 device_query:   显示GPU诊断信息 time:   评估模型执行时间 Flags from tools/caffe.cpp: -gpu (可选参数,给定时运行在GPU模式,'-gpu all' 则表示运行在所有可用的GPU设备上,此时真正训练批量大小是N×B,…
网上的caffe的安装教程繁杂而散乱,对初学者很不友好,尤其对该框架理解不深的童鞋.总的来说,caffe的安装不外乎几个固定的步骤,对每一步有了一定的理解,安装只是time-consuming的问题!关键是自己要理解每一步是做什么的,最起码要有思维惯性.对Ubuntu活Redhat等,都是大同小异. [一]安装相关依赖包 1.编译工具等,如gcc(对版本有要求),git.python-pip等: 2.编译依赖包,如cuda/cudnn/hdf5等,具体参考官网: ps:若有sudo权限,需要下载…
1.caffe主页,有各种tutorial. 2.Evan Shelhamer的tutorial,包括视频.…
首先,数据文件和模型文件都已经下载并处理好,不提. cd   "caffe-root-dir " ----------------------------------分割线------------------------------- # set up Python environment: numpy for numerical routines, and matplotlib for plottingimport numpy as npimport matplotlib.pyplo…
本文原创,转载请注明出处. ------------------------------------------------分割线-------------------------------- 概要:整个过程基本上是傻瓜模式的,不需要gcc4.9, 也不需要和gcc5.4的切换. 硬件:gtx650tiboost 酷睿2Q 9300四核 主板貌似技嘉的一个极老的小板子 环境: 系统:ubuntu16.04 86x64 gcc: 5.4 86x64 cuda8 : cuda-repo-ubunt…
https://www.jianshu.com/p/f6f49f6bcea6 https://github.com/BVLC/caffe/tree/master/include/caffe/layers 其中,常用的Interp层是自定义层,可参考PSPNet;…
caffe特征可视化的代码例子 不少读者看了我前面两篇文章 总结一下用caffe跑图片数据的研究流程 deep learning实践经验总结2--准确率再次提升,到达0.8.再来总结一下 之后.想知道我是怎么实现特征可视化的. 简单来说,事实上就是让神经网络正向传播一次.然后把某层的特征值给取出来.然后转换为图片保存. 以下我提供一个demo,大家能够依据自己的需求改动. 先看看我的demo的用法. visualize_features.bin net_proto pretrained_net_…
小喵的唠叨话:我们在上一篇博客里面,介绍了Caffe的Data层的编写.有了Data层,下一步则是如何去使用生成好的训练数据.也就是这一篇的内容. 小喵的博客:http://www.miaoerduo.com 博客原文:http://www.miaoerduo.com/deep-learning/基于caffe的deepid2实现(中).html 二.精髓,DeepID2 Loss层 DeepID2这篇论文关于verification signal的部分,给出了一个用于监督verificatio…
深度学习的第一个实例一般都是mnist,只要这个例子完全弄懂了,其它的就是举一反三的事了.由于篇幅原因,本文不具体介绍配置文件里面每个参数的具体函义,如果想弄明白的,请参看我以前的博文: 数据层及参数 视觉层及参数 solver配置文件及参数 一.数据准备 官网提供的mnist数据并不是图片,但我们以后做的实际项目可能是图片.因此有些人并不知道该怎么办.在此我将mnist数据进行了转化,变成了一张张的图片,我们练习就从图片开始.mnist图片数据我放在了百度云盘. mnist图片数据下载:htt…
1.首先安装Ubuntu16.04系统. 2.安装显卡驱动 在官网上下载最新的NVIDIA-Linux-x86_64-375.26.run驱动.然后 Ctrl+Alt+F1进入控制台,输入 sudo service lightdm stop sudo sh NVIDIA-Linux-x86_64-375.26.run 安装驱动的时候会冒出一个 The distribution-provided pre-install script failed! Are you sure you want to…
下面是基于我自己的接口,我是用来分类一维数据的,可能不具通用性: (前提,你已经编译了caffe的python的接口) 添加 caffe塻块的搜索路径,当我们import caffe时,可以找到. 对于这一步,一般我们都会把 cafffe 模块的搜索路经永久地加到先加$PYTHONPATH中去,如可以把 export PYTHONPATH=/path/to/caffe/python:$PYTHONPATH 写到 .bashrc中.而下面的做法,只是临时的做法哦: improt sys #sys.…
Caffe学习. #@author: gr #@date: 2015-08-30 #@email: forgerui@gmail.com 1. Install 详细可以见官方文档,博客1,博客2. 1.1 Prerequisites CUDA is required for GPU mode. library version 7.0 and the latest driver version are recommended, but 6.* is fine too 5.5, and 5.0 ar…
在imagenet上的图像分类challenge上Alex提出的alexnet网络结构模型赢得了2012届的冠军.要研究CNN类型DL网络模型在图像分类上的应用,就逃不开研究alexnet.这是CNN在图像分类上的经典模型(DL火起来之后). 在DL开源实现caffe的model例子中.它也给出了alexnet的复现.详细网络配置文件例如以下https://github.com/BVLC/caffe/blob/master/models/bvlc_reference_caffenet/train…
caffe中负责整个网络输入的datalayer是从leveldb里读取数据的,是一个google实现的很高效的kv数据库. 因此我们训练网络必须先把数据转成leveldb的格式. 这里我实现的是把一个目录的全部图片转成leveldb的格式. 工具使用命令格格式:convert_imagedata src_dir dst_dir attach_dir channel width height 例子:./convert_imagedata.bin /home/linger/imdata/colla…
Caffe是一个清晰而高效的深度学习框架,其作者是博士毕业于UC Berkeley的 贾扬清,目前在Google工作.本文是根据机器学习研究会组织的online分享的交流内容,简单的整理了一下. 目录 1.caffe分享 1.1.caffe起源 1·2.caffe介绍 1.3.caffe其他方向 2.讨论 2.1.caffe算法与结构 2.2.caffe工程与应用 2.3.模型训练与调参 2.4.caffe与DL的学习与方向 2.5.其他 3.附录 1.caffe分享 我用的ppt基本上和我们在…
模型融合 有的时候我们手头可能有了若干个已经训练好的模型,这些模型可能是同样的结构,也可能是不同的结构,训练模型的数据可能是同一批,也可能不同.无论是出于要通过ensemble提升性能的目的,还是要设计特殊作用的网络,在用Caffe做工程时,融合都是一个常见的步骤. 比如考虑下面的场景,我们有两个模型,都是基于resnet-101,分别在两拨数据上训练出来的.我们希望把这两个模型的倒数第二层拿出来,接一个fc层然后训练这个fc层进行融合.那么有两个问题需要解决:1)两个模型中的层的名字都是相同的…
前言: 由于业务需要,接触caffe已经有接近半年,一直忙着阅读各种论文,重现大大小小的模型. 期间也总结过一些caffe源码学习笔记,断断续续,这次打算系统的记录一下caffe源码学习笔记,巩固一下C++,同时也梳理一下自己之前的理解. 正文: 我们先不看caffe的框架结构,先介绍一下caffe.proto,是google开源的一种数据交互格式--Google Protobuf,这种数据的格式,我们可以看到caffe.proto中内容: syntax = "proto2"; pac…
title: Ubuntu 16.04+CUDA8.0+CUNN5.1+caffe+tensorflow+Theano categories: 深度学习 tags: [深度学习框架搭建] --- 前言 经过一周的不懈努力,通过对网站各种安装教程的学习,终于呕心沥血的完成本次的环境搭建= =.虽然网站的教程多不胜数,但是学习下来,总有一些不尽人意的地方,比如一些命令行中少了一个空格或者什么的,对于一个Ubuntu小白(就像我一样+_+)来说出了问题,很难察觉.现在就根据我自身在安装过程中的一些体会…
目录 写在前面 成员变量的含义及作用 构造与析构 内存同步管理 参考 博客:blog.shinelee.me | 博客园 | CSDN 写在前面 在Caffe源码理解1中介绍了Blob类,其中的数据成员有 shared_ptr<SyncedMemory> data_; shared_ptr<SyncedMemory> diff_; std::shared_ptr 是共享对象所有权的智能指针,当最后一个占有对象的shared_ptr被销毁或再赋值时,对象会被自动销毁并释放内存,见cp…
所需环境 opencv3.x + cuda9.0 安装 caffe首先在你要安装的路径下 clone : git clone https://github.com/BVLC/caffe.git 进入 caffe ,将 Makefile.config.example 文件复制一份并更名为 Makefile.config ,也可以在 caffe 目录下直接调用以下命令完成复制操作 : sudo cp Makefile.config.example Makefile.config 复制一份的原因是编译…