luogu1117 优秀的拆分 (后缀数组)】的更多相关文章

考虑分别计算每个位置作为AA的末尾或者BB的开头的个数 最后乘一乘就是答案 据说是套路的计算AA的方法: 首先枚举A的长度L,然后每L个字符当做一个关键点,这样的话,一个AA包含且只包含相邻两个关键点(记为a,b),而且满足lcp(a,b)+lcs(a,b)-1>=L 手画一下就能看出来 于是SA搞lcp 倒过来再SA搞lcs 最后差分一下统计答案即可 #include<bits/stdc++.h> #define pa pair<int,int> #define CLR(a…
题目大意:给你一个字符串,求所有子串的所有优秀拆分总和,优秀的拆分被定义为一个字符串可以被拆分成4个子串,形如$AABB$,其中$AA$相同,$BB$相同,$AB$也可以相同 作为一道国赛题,95分竟然就这么给我们了!只是一个$NOIP$难度的哈希套$DP$啊...... 95分就是从后往前找,统计$AA$串,每次统计一下从这个位置开始的所有子串 和 紧随其后的等长串 相同的个数$sum$ $hash(i,i+j-1)==hash(i+j,i+2*j-1) sum[i]++$ 然后再统计$BB$…
题面:洛谷 题解: 因为对于原串的每个长度不一定等于len的拆分而言,如果合法,它将只会被对应的子串统计贡献. 所以子串这个限制相当于是没有的. 所以我们只需要对于每个位置i求出f[i]表示以i为开头的形如BB这样的串的个数,g[i]表示以i为结尾的形如AA这样的串的个数即可. 考虑分别处理这2个数组. 我们可以枚举AA(BB)这样的串中A(B)的长度l,然后把原串每l个字符放在一个块中,在考虑统计答案. 先考虑这样一个问题: 假如固定一个串的结尾,再枚举这个串A的长度,怎样可以判断是否合法?…
#219. [NOI2016]优秀的拆分 题意:求有多少AABB样子的子串,拆分不同的同一个子串算多个 一开始一直想直接求,并不方便 然后看了一眼Claris的题解的第一行就有思路了 如果分开,求\(f[i]\)以i结尾AA形式子串和\(g[i]\)以i开始AA形式子串 就可以套路了 使用常用技巧,枚举\(L=|A|\),AA子串一定覆盖了两个关键点,枚举更新就行了,对于区间加可以使用差分 其实这道题很好拿95分啊,\(O(n^2)\)用哈希判断就行了 #include <iostream>…
BZOJ 洛谷 令\(st[i]\)表示以\(i\)为开头有多少个\(AA\)这样的子串,\(ed[i]\)表示以\(i\)结尾有多少个\(AA\)这样的子串.那么\(Ans=\sum_{i=1}^{n-1}ed[i]*st[i+1]\). 考虑如何求\(st[i],ed[i]\).暴力的话可以枚举\(i\),然后哈希判一下.这样\(O(n^2)\)就有\(95\)分了.. 正解是,枚举长度\(len\),判断每个位置是否存在长为\(2*len\)的\(AA\)这样的子串. 每隔\(len\)的…
连NOI Day1T1都不会做...看了题解都写不出来还要抄Claris的代码.. 题目链接: (luogu)https://www.luogu.org/problemnew/show/P1117 (bzoj)https://www.lydsy.com/JudgeOnline/problem.php?id=4650 (uoj)http://uoj.ac/problem/219 题解: \(f[i]\)表示以\(i\)结束的\(AA\)型子串个数,\(g[i]\)表示以\(i\)开始的\(AA\)…
我们只需要统计在某一个点开始的形如$AA$字符串个数,和结束的个数相乘求和. 首先枚举循环节的长度L.即$\mid (A) \mid=L$ 然后肯定会经过s[i]和[i+L]至少两个点. 然后我们可以枚举,然后求出循环节循环的次数.起点.终点,然后发现答案更新是一段$+1$的操作, 然后就可以用差分的思想更新即可. #include <map> #include <cmath> #include <queue> #include <cstdio> #incl…
[NOI2016]优秀的拆分 题目描述 如果一个字符串可以被拆分为 \(AABB\) 的形式,其中 A和 B是任意非空字符串,则我们称该字符串的这种拆分是优秀的. 例如,对于字符串 \(aabaabaa\) ,如果令 \(A=aab\) , \(B=a\) ,我们就找到了这个字符串拆分成 \(AABB\) 的一种方式. 一个字符串可能没有优秀的拆分,也可能存在不止一种优秀的拆分.比如我们令 \(A=a\) , \(B=baa\) ,也可以用 \(AABB\) 表示出上述字符串:但是,字符串 \(…
[BZOJ4650][NOI2016]优秀的拆分(后缀数组) 题面 BZOJ Uoj 题解 如果我们知道以某个位置为开始/结尾的\(AA\)串的个数 那就直接做一下乘法就好 这个怎么求? 枚举一个位置 枚举串的长度 直接暴力算就好啦 至于是否可行,用\(SA\)求\(lcp\)就好啦 这样就是\(95\)分 NOI这么好拿部分分的??? #include<iostream> #include<cstdio> #include<cstdlib> #include<c…
点此看题面 大致题意: 定义将一个字符串拆成\(AABB\)的形式为优秀拆分,求一个字符串所有子串的优秀拆分个数. 后缀数组 这题可是一道后缀数组黑题啊. 其实看完题解这题还是挺简单的. 大致思路 显然可以考虑对于每个位置\(i\)分别处理\(AA\)和\(BB\)的个数\(pre_i\)和\(nxt_i\),最后扫一遍相乘求和即可. 而这显然是可以用后缀数组来求的. 首先,我们枚举\(i\)来表示当前所找的\(AA\)型的字符串中\(A\)的长度. 然后枚举\(j\)和\(k\),其中\(j=…