原文: A Discriminative Feature Learning Approach for Deep Face Recognition 用于人脸识别的center loss. 1)同时学习每个类的深度特征的中心点 2)对深度特征和其对应的类中心的距离有一定的惩罚 提出的center loss函数在CNN中可以训练并且很容易优化. 联合softmax loss和center loss,可以同时增加类间分散程度(inter-class dispension)与类内紧凑程度(intra-cl…
URL:http://ydwen.github.io/papers/WenECCV16.pdf这篇论文主要的贡献就是提出了Center Loss的损失函数,利用Softmax Loss和Center Loss联合来监督训练,在扩大类间差异的同时缩写类内差异,提升模型的鲁棒性. 为了直观的说明softmax loss的影响,作者在对LeNet做了简单修改,把最后一个隐藏层输出维度改为2,然后将特征在二维平面可视化,下面两张图分别是MNIDST的train集和test集,可以发现类间差异比较明显,但…
url: https://kpzhang93.github.io/papers/eccv2016.pdf year: ECCV2016 abstract 对于人脸识别任务来说, 网络学习到的特征具有判别性是一件很重要的事情. 增加类间距离, 减小类内距离在人脸识别任务中很重要. 那么, 该如何增加类间距离, 减小类内距离呢? 通常, 我们使用 softmax loss 作为分类任务的loss, 但是, 单单依赖使用 softmax 监督学习到的特征只能将不同类别分开, 却无法约束不同类别之间的距…
Learning how to Active Learn: A Deep Reinforcement Learning Approach 2018-03-11 12:56:04 1. Introduction: 对于大部分 NLP 的任务,得到足够的标注文本来进行模型的训练是一个关键的瓶颈.所以,active learning 被引入到 NLP 任务中以最小化标注数据的代价.AL 的目标是通过识别一小部分数据来进行标注,以此来降低 cost,选来最小化监督模型的精度. 毫无疑问的是,AL 对于其…
Heterogeneous Face Attribute Estimation: A Deep Multi-Task Learning Approach  2017.11.28 Introduction: 人脸属性的识别在社会交互,提供了非常广泛的信息,包括:the person’s identity, demographic (age, gender, and race), hair style, clothing, etc. 基于人脸属性识别的场景也越来越多,如:(i)video Surve…
来源:http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio classification和 NLP等问题,通过机器进行无监督学习feature得到的结果,其accuracy大多明显优于其他方法进行training.本文将主要针对Andrew的unsupervised learning,结合他的视频:unsupervised feature learning b…
From Facial Parts Responses to Face Detection: A Deep Learning Approach ICCV 2015 从以上两张图就可以感受到本文所提方法的强大效果.Ok,那么我们不禁想问: 怎么做的?…
这篇论文是要解决 person re-identification 的问题.所谓 person re-identification,指的是在不同的场景下识别同一个人(如下图所示).这里的难点是,由于不同场景下的角度.背景亮度等等因素的差异,同一个人的图像变化非常大,因而不能使用一般的图像分类的方法.论文采用了一种相似性度量的方法来促使神经网络学习出图像的特征,并根据特征向量的欧式距离来确定相似性.除此之外,论文通过对网络的训练过程进行分析,提出了一种计算效率更高的模型训练方法. 论文方法 相似性…
http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio classification和 NLP等问题,通过机器进行无监督学习feature得到的结果,其accuracy大多明显优于其他方法进行training.本文将主要针对Andrew的unsupervised learning,结合他的视频:unsupervised feature learning by A…
from:http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio classification和 NLP等问题,通过机器进行无监督学习feature得到的结果,其accuracy大多明显优于其他方法进行training.本文将主要针对Andrew的unsupervised learning,结合他的视频:unsupervised feature learning…