IOU和非极大值抑制】的更多相关文章

你如何判断对象检测算法运作良好呢?在这一节中,你将了解到并交比函数,可以用来评价对象检测算法. 一 并交比(Intersection over union ) 在对象检测任务中,你希望能够同时定位对象,所以如果实际边界框是这样的,你的算法给出这个紫色的边界框,那么这个结果是好还是坏?所以交并比(loU)函数做的是计算两个边界框交集和并集之比.两个边界框的并集是这个区域,就是属于包含两个边界框区域(绿色阴影表示区域),而交集就是这个比较小的区域(橙色阴影表示区域),那么交并比就是交集的大小,这个橙…
如何判断对象检测算法运作良好呢? 一.交并比(Intersection over union,IoU) 是产生的候选框(candidate bound)与原标记框(ground truth bound)的交叠率,即它们的交集与并集的比值,理想情况下是完全重叠,即比值为1 一般约定,在计算机检测任务中,如果IoU≥0.5,就说检测正确.当然0.5只是约定阈值,你可以将IoU的阈值定的更高.IoU越高,边界框越精确. 二.非极大值抑制(Non-Maximum Suppression,NMS) 非极大…
1. IoU(区域交并比) 计算IoU的公式如下图,可以看到IoU是一个比值,即交并比. 在分子中,我们计算预测框和ground-truth之间的重叠区域: 分母是并集区域,或者更简单地说,是预测框和ground-truth所包含的总区域. 重叠区域和并集区域的比值,就是IoU. 1.1 为什么使用IoU来评估目标检测器 与分类任务不同,我们预测的bounding box的坐标需要去匹配ground-truth的坐标,而坐标完全匹配基本是不现实的.因此,我们需要定义一个评估指标,奖励那些与gro…
概述 非极大值抑制(Non-Maximum Suppression,NMS),顾名思义就是抑制不是极大值的元素,可以理解为局部最大搜索.这个局部代表的是一个邻域,邻域有两个参数可变,一是邻域的维数,二是邻域的大小.这里不讨论通用的NMS算法(参考论文<Efficient Non-Maximum Suppression>对1维和2维数据的NMS实现),而是用于目标检测中提取分数最高的窗口的.例如在行人检测中,滑动窗口经提取特征,经分类器分类识别后,每个窗口都会得到一个分数.但是滑动窗口会导致很多…
非极大值抑制(Non-Maximum Suppression,NMS),顾名思义就是抑制不是极大值的元素,可以理解为局部最大搜索.也可以理解为只取置信度最高的一个识别结果. 举例:  如图所示,现在识别出了3个人脸,但该三个人脸其实都为同一个目标,只是位置不同,置信度也不一样. 这时候,我们想要是置信度最高的"0.97"的检测结果,以及位置信息. 那么,我们就可以采用NMS的方式,来得到我们想要的最后的结果. 原理: 对于Bounding Box的列表B及其对应的置信度S,采用下面的…
转自:https://www.cnblogs.com/makefile/p/nms.html 概述 非极大值抑制(Non-Maximum Suppression,NMS),顾名思义就是抑制不是极大值的元素,可以理解为局部最大搜索.这个局部代表的是一个邻域,邻域有两个参数可变,一是邻域的维数,二是邻域的大小.这里不讨论通用的NMS算法(参考论文<Efficient Non-Maximum Suppression>对1维和2维数据的NMS实现),而是用于目标检测中提取分数最高的窗口的.例如在行人检…
非极大值抑制(Non-Maximum Suppression,NMS)   概述 非极大值抑制(Non-Maximum Suppression,NMS),顾名思义就是抑制不是极大值的元素,可以理解为局部最大搜索.这个局部代表的是一个邻域,邻域有两个参数可变,一是邻域的维数,二是邻域的大小.这里不讨论通用的NMS算法(参考论文<Efficient Non-Maximum Suppression>对1维和2维数据的NMS实现),而是用于目标检测中提取分数最高的窗口的.例如在行人检测中,滑动窗口经提…
4.3目标检测 觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.6交并比intersection over union 交并比函数(loU)可以用来评价对象检测算法,可以被用来进一步改善对象检测算法的性能. 如何评价一个算法的好坏,即如图中假设红色框线表示 真实的对象所在边界框,紫色框线表示 模型预测的对象所在边界框.通过计算两个边界框交集和并集的比用于评价对象检测算法的好坏. 在对象检测的算法中,如果IoU>0.5则认为检测正确.0.5是人为定义的阈值,也可以定义为0.5及以上的值…
NMS(non maximum suppression),中文名非极大值抑制,在很多计算机视觉任务中都有广泛应用,如:边缘检测.目标检测等. 这里主要以人脸检测中的应用为例,来说明NMS,并给出Matlab示例程序. 人脸检测的一些概念 (1) 绝大部分人脸检测器的核心是分类器,即给定一个尺寸固定图片,分类器判断是或者不是人脸: (2)将分类器进化为检测器的关键是:在原始图像上从多个尺度产生窗口,并resize到固定尺寸,然后送给分类器做判断.最常用的方法是滑动窗口. 以下图为例,由于滑动窗口,…
NMS  非极大值抑制:找到局部最大值,并删除邻域内其他的值. 简单说一下流程: 首先剔除背景(背景无需NMS),假设有6个边界框,根据分类置信度对这6个边界框做降序排列,假设顺序为A.B.C.D.E.F. 从置信度最大的边界框A开始,分别判断B-F这5个边界框与A的交并比IOU是否大于设定的阈值: 如果B.C和A的IOU超过阈值,则删除B.C,其余D.E.F保留:并且A是我们的一个输出: 在保留的边界框D.E.F中选出置信度最大的D,继续判断D与E.F的IOU,和步骤2一样,如果IOU大于阈值…