Lucas 大组合数】的更多相关文章

题目:HDU 3037 题意:有n个树,m个坚果,放到n个树里,可以不放完,有多少种方法. 分析: 得到组合数了. 大组合数什么费马小定理,Lucas定理都来了: 总的说,不能用二维地推了,用的却是组合数的定义. 一般来说大组合通常要取模. 那么不能边乘边模,边除边模,等式不会成立. 根据逆元,除以一个数取模 = 乘以这个数对mod的逆元. 那么式子就可以写成: 这里,我们可以预处理所有 i 对 mod 的逆元后,累乘,这样得到的就是阶乘的逆元. 然后就是求 i 对 mod 的逆元了,什么扩展欧…
typedef long long ll; /********************************** 大组合数取模之lucas定理模板,1<=n<=m<=1e9,1<p<=1e6,p必须为素数 输入:C(n,m)%p 调用lucas(n,m,p) 复杂度:min(m,p)*log(m) ***********************************/ //ax + by = gcd(a,b) //传入固定值a,b.放回 d=gcd(a,b), x , y…
LL MyPow(LL a, LL b) { LL ret = ; while (b) { ) ret = ret * a % MOD; a = a * a % MOD; b >>= ; } return ret; } LL C(int n, int m) { ) ; LL a = fact[n], b = fact[n - m] * fact[m] % MOD; ) % MOD;//除以一个数,等于乘以这个数的乘法逆元, 然后是在MOD的情况下 } 上面的代码可以计算组合数取模, 能解决的规…
最近碰到一题,问你求mod (p1*p2*p3*……*pl) ,其中n和m数据范围是1~1e18 , l ≤10 , pi ≤ 1e5为不同的质数,并保证M=p1*p2*p3*……*pl ≤ 1e18 . 要解决这个问题首先需要Lucas定理 或者 C!解法. Lucas定理: 我们令n=sp+q , m=tp+r . q , r ≤ p 那么,然后你只要继续对调用Lucas定理即可. 代码可以递归的去完成这个过程,其中递归终点为t = 0 : 伪代码,时间O(logp(n)*p): int L…
https://blog.csdn.net/sr_19930829/article/details/39058487 LL Lucas(LL n, LL m, int p){ ; } Saving Beans HDU3037 #include <iostream> #include <string.h> #include <cmath> using namespace std; typedef long long ll; ; ll fac[maxm]; void ini…
瞬间移动 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 1215    Accepted Submission(s): 600 Problem Description 有一个无限大的矩形,初始时你在左上角(即第一行第一列),每次你都可以选择一个右下方格子,并瞬移过去(如从下图中的红色格子能直接瞬移到蓝色格子),求到第n行第m列的格子有几…
poj1942 Paths on a Grid 题意:给定一个长m高n$(n,m \in unsigned 32-bit)$的矩形,问有几种走法.$n=m=0$时终止. 显然的$C(m+n,n)$ 但是没有取模,n,m的范围又在unsigned int 范围内 于是有一种神奇的方法↓↓ typedef unsigned us;us C(us a,us b){//C(a,b) double cnt=1.0; while(b) cnt*=(double)(a--)/(double)(b--); re…
题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1226 题解:由于这些任务完成是有先后的所以最后一个完成的肯定是最后一个任务的子任务,不妨设dp[i]表示第几个任务完成后总共有几种方案,这里要逆着来至于为什么想想也是挺好理解的.于是有这么一个方程式dp[i]=dp[i + 1]*C(sum-1,k[i]-1),这样列出来就更好理解了.就是最后一个位置肯定是确定的之后就靠组合来凑. #include <iostream> #…
#include<bits/stdc++.h> using namespace std; typedef long long ll; #define N 2000005 ll p; ll n,m; vector<ll>pri; bool prime[N]; void seive() { ;i<=N;i++) prime[i]=; ;i<N;i++) { if(prime[i]) { pri.push_back(i); ; } } } ll P(ll a,ll b) {…
卢卡斯定理是一个与组合数有关的数论定理,在算法竞赛中用于求组合数对某质数的模. 第一部分是博主的个人理解,第二部分为 Pecco 学长的介绍 第一部分 一般情况下,我们计算大组合数取模问题是用递推公式进行计算的: \[C_n^m=(C_{n-1}^m+C_{n-1}^{m-1}) mod\ p \] 其中p相对较小的素数.但是当n和m过大时,计算的耗费就急剧增加\(O(mn)\),在实践中不适用.当这时候就需要Lucas定理进行快速运算: \[C_n^m=\prod_{i=0}^{k}C_{n_…