1 Riemann 积分的局限性 (1) Riemann 积分与极限的条件太严:    $$\bex    f_k\rightrightarrows f\ra \lim \int_a^b f_k    =\int_a^b \lim f_k.    \eex$$ 这 ``一致收敛'' 极大地限制了 Riemann 积分的应用. (2) 积分运算不完全是微分运算的逆运算:    $$\bex    f\mbox{ 在 }x\mbox{ 连续}\ra \frac{\rd}{\rd x}\int_a^x…
本节中, 设 $f,g,f_i$ 是可测集 $E$ 上的非负可测函数, $A,B$ 是 $E$ 的可测子集.       1 定义: (1) $f$ 在 $E$ 上的 Lebesgue 积分        $$\bex        \int_E f(x)\rd x        =\sup\sed{\int_E\phi(x)\rd x; 0\leq \phi\leq f}.        \eex$$ (2) $f$ 在 $E$ 上 Lebesgue 可积 $\dps{\lra \int_Ef…
1 设        $$\bex        \phi(x)=\sum_{i=1}^j c_i\chi_{E_i}(x),\quad c_i\geq 0,        \eex$$ 其中        $$\bex        E_i\mbox{ 可测},\quad E_i\mbox{ 两两不交},\quad E=\cup_{i=1}^j E_i,        \eex$$ 则定义        $$\bex        \int_E \phi(x)\rd x=\sum_{i=1}^…
1 记号: 一元函数 $f$ 在 $[a,b]$ 上的 (1)Riemann 积分: $\dps{(R)\int_a^b f(x)\rd x}$; (2)Lebesgue 积分: $\dps{(L)\int_{[a,b]}f(x)\rd x}$. 2回忆 (1)Riemann 积分: 对函数 $f:[a,b]\to \bbR$ 及 $[a,b]$ 的任一分划 $$\bex T:\ a=x_0<x_1<\cdots<x_n=b,\quad\sex{\mbox{细度 }\sen{T}=\ma…
1定义 (1)$f$ 在 $E$ 上积分确定 $\lra$ $\dps{\int_Ef^+(x)\rd x<+\infty}$ 或 $\dps{\int_Ef^-(x)\rd x<+\infty}$; 此时称 $$\bex \int_E f(x)\rd x=\int_Ef^+(x)\rd x -\int_Ef^-(x)\rd x \eex$$ 为 $f$ 在 $E$ 上的 Lebesgue 积分. (2)$f$ 在 $E$ 上 Lebesgue 可积 $\lra$ $\dps{\int_Ef^…
1 本节推广数学分析中的 Fubini 定理. 为此, 先引入 (1)(从低到高) 对 $A\subset \bbR^p, B\subset\bbR^q$, $$\bex A\times B=\sed{(x,y);x\in A, y\in B} \eex$$ 称为 $A$ 与 $B$ 的直积 (direct product). (2)(从高到低) 设 $E\subset \bbR^{p+q}$, $x\in \bbR^p$, 则称 $$\bex E_x=\sed{y\in\bbR^q;(x,y)…
  public void jifenchange()//积分方法     {         //积分模块//推断如今的日期和任务完毕日志数据库取出来 的日期大小,注意:Compare()方法仅仅会返回1,0,-1.1表示前面大于后面,0是等,-1是小于               if (ids != null && ids.Tables[0].Rows.Count > 0)//假设存在日期         {             DateTime nowtime = Dat…
RT,想到什么就写什么呗,这是最简单的方式,顺便给自己做一个记录,反正自己记忆力也不太好.本文是仿陆金所的积分系统,自己YY的一套东西. 首先我想做一个VIP兑换投资卷的功能: 我们先来确定一些我知道的表: 首先是关于“竞拍”相关的表: 0.商品分类表(后台管理员权限创建): ID 类别名称 创建时间 备注 1.商品详情表: 商品详情表当中包含如下内容: 商品的标题 商品的副标题(副标题可以为空) 市场参考价 当前价格 开始时间 结束时间 起拍价 加价幅度 竞拍获胜人数 出价次数 商品详情(TE…
很久没写博客了,如果有写得不好的地方,还请多多见谅. 架构设计 需求分析 这篇文章主要是介绍此VIP系统的基础架构.说实在的,我其实对 架构方面也不是很懂,我这套框架 还是拿别人的东西改过来的,并不是完全是自己写的.首先需要注意 以下几点,当然了,我先罗列下面的几点,以后有需要的,再回头补充. 我们需要 分析这个系统的背景 我们需要分析这个系统的每一个角色,以及它和其他角色和实体之间的关系 我们需要理清楚现有系统和新系统之间的接口关系. VIP系统是否只是一个根节点,还是有它的上级节点? 系统的…
physics 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5826 Description There are n balls on a smooth horizontal straight track. The track can be considered to be a number line. The balls can be considered to be particles with the same mass. At the…