05、Spark】的更多相关文章

05.Spark shell连接到Spark集群执行作业 5.1 Spark shell连接到Spark集群介绍 Spark shell可以连接到Spark集群,spark shell本身也是spark的一个应用,是和Spark集群的一种交互方式.每次action动作的执行,都会对应一个job. 5.2 连接方式指定 #进入Spark bin目录 $>cd /soft/spark/bin #连接到Spark master的RPC端口 $>spark-shell --master spark:/…
转载自http://www.shareditor.com/blogshow?blogId=96 机器学习.数据挖掘等各种大数据处理都离不开各种开源分布式系统,hadoop用于分布式存储和map-reduce计算,spark用于分布式机器学习,hive是分布式数据库,hbase是分布式kv系统,看似互不相关的他们却都是基于相同的hdfs存储和yarn资源管理,本文通过全套部署方法来让大家深入系统内部以充分理解分布式系统架构和他们之间的关系  请尊重原创,转载请注明来源网站www.sharedito…
Hadoop原理 分为HDFS与Yarn两个部分.HDFS有Namenode和Datanode两个部分.每个节点占用一个电脑.Datanode定时向Namenode发送心跳包,心跳包中包含Datanode的校验等信息,用来监控Datanode.HDFS将数据分为块,默认为64M每个块信息按照配置的参数分别备份在不同的Datanode,而数据块在哪个节点上,这些信息都存储到Namenode上面.Yarn是MapReduce2,可以集成更多的组件,如spark.mpi等.MapReduce包括Job…
weekend01.02.03.04.05.06.07的分布式集群的HA测试 1)  weekend01.02的hdfs的HA测试 2)  weekend03.04的yarn的HA测试 1)  weekend01.02的hdfs的HA测试 首先,分布式集群都是正常的,且工作的 然后呢, 以上是,weekend01(active).weekend02(standby) 当weekend01给kill, 变成weekend01(standby).weekend02(active) 模拟weekend…
pom内容: <dependency> <groupId>org.apache.hbase</groupId> <artifactId>hbase-server</artifactId> <version>0.98.6-cdh5.2.0</version> <exclusions> <exclusion> <artifactId>javax.servlet-api</artifac…
本课程主要讲解目前大数据领域最热门.最火爆.最有前景的技术——Spark.在本课程中,会从浅入深,基于大量案例实战,深度剖析和讲解Spark,并且会包含完全从企业真实复杂业务需求中抽取出的案例实战.课程会涵盖Scala编程详解.Spark核心编程.Spark SQL和Spark Streaming.Spark内核以及源码剖析.性能调优.企业级案例实战等部分.完全从零起步,让学员可以一站式精通Spark企业级大数据开发,提升自己的职场竞争力,实现更好的升职或者跳槽,或者从j2ee等传统软件开发工程…
问题导读 1.当前集群的可用资源不能满足应用程序的需求,怎么解决? 2.内存里堆的东西太多了,有什么好办法吗?         1.WARN TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster uito ensure that workers are registered and have sufficient memory 当前的集群的可用资源不能满足应用程序所请求的资源. 资源分2…
本課主題 大数据性能调优的本质 Spark 性能调优要点分析 Spark 资源使用原理流程 Spark 资源调优最佳实战 Spark 更高性能的算子 引言 我们谈大数据性能调优,到底在谈什么,它的本质是什么,以及 Spark 在性能调优部份的要点,这两点让在进入性能调优之前都是一个至关重要的问题,它的本质限制了我们调优到底要达到一个什么样的目标或者说我们是从什么本源上进行调优.希望这篇文章能为读者带出以下的启发: 了解大数据性能调优的本质 了解 Spark 性能调优要点分析 了解 Spark 在…
05.NetCore2.0依赖注入(DI)之Web应用启动流程管理 在一个Asp.net core 2.0 Web应用程序中,启动过程都做了些什么?NetCore2.0的依赖注入(DI)框架是如何管理启动过程的?WebServer和Startup是如何注册的? ------------------------------------------------------------------------------------------------------------ 写在前面:这是一个系…
[摘要] 知乎上一篇很不错的科普文章,介绍大数据技术生态圈(Hadoop.Hive.Spark )的关系. 链接地址:https://www.zhihu.com/question/27974418 [问题] 如何用形象的比喻描述大数据的技术生态?Hadoop.Hive.Spark 之间是什么关系? [答案1] 学习很重要的是能将纷繁复杂的信息进行归类和抽象. 对应到大数据技术体系,虽然各种技术百花齐放,层出不穷,但大数据技术本质上无非解决4个核心问题. 1.存储,海量的数据怎样有效的存储?主要包…
今天,上海尚学堂大数据培训班毕业的一位学生去参加易普软件公司面试,应聘的职位是大数据开发.面试官问了他10个问题,主要集中在Hbase.Spark.Hive和MapReduce上,基础概念.特点.应用场景等问得多.看来,还是非常注重基础的牢固.整个大数据开发技术,这几个技术知识点占了很大一部分.那本篇文章就着重介绍一下这几个技术知识点. 一.Hbase 1.1.Hbase是什么? HBase是一种构建在HDFS之上的分布式.面向列的存储系统.在需要实时读写.随机访问超大规模数据集时,可以使用HB…
转自infoQ! 根据 O’Reilly 2016年数据科学薪资调查显示,SQL 是数据科学领域使用最广泛的语言.大部分项目都需要一些SQL 操作,甚至有一些只需要SQL. 本文涵盖了6个开源领导者:Hive.Impala.Spark SQL.Drill.HAWQ 以及Presto,还加上Calcite.Kylin.Phoenix.Tajo 和Trafodion.以及2个商业化选择Oracle Big Data SQL 和IBM Big SQL,IBM 尚未将后者更名为“Watson SQL”.…
不多说,直接上干货! 说在前面的话 此笔,对于仅对于Hadoop和Spark初中学者.高手请忽略! 1 Java基础: 视频方面:          推荐<毕向东JAVA基础视频教程>.学习hadoop不需要过度的深入,java学习到javase,在Java虚拟机的内存管理.以及多线程.线程池.设计模式.并行化多多理解实践即可.     书籍方面: 推荐李兴华的<java开发实战经典> 2 Linux基础:     视频方面: (1)马哥的高薪Linux视频课程-Linux入门.…
说在前面的话 此笔,对于仅对于Hadoop和Spark初中学者.高手请忽略! 1 Java基础: 视频方面:          推荐<毕向东JAVA基础视频教程>.学习hadoop不需要过度的深入,java学习到javase,在Java虚拟机的内存管理.以及多线程.线程池.设计模式.并行化多多理解实践即可.     书籍方面: 推荐李兴华的<java开发实战经典> 2 Linux基础:     视频方面: (1)马哥的高薪Linux视频课程-Linux入门. (2)兄弟连的新版Li…
转载:http://www.cnblogs.com/jcchoiling/p/6440709.html 一.大数据性能调优的本质 编程的时候发现一个惊人的规律,软件是不存在的!所有编程高手级别的人无论做什么类型的编程,最终思考的都是硬件方面的问题!最终思考都是在一秒.一毫秒.甚至一纳秒到底是如何运行的,并且基于此进行算法实现和性能调优,最后都是回到了硬件! 在大数据性能的调优,它的本质是硬件的调优!即基于 CPU(计算).Memory(存储).IO-Disk/ Network(数据交互) 基础上…
一.简介 spark的官网:http://spark.apache.org/ spark解决了什么问题? 我们都知道hadoop,hadoop以一个非常容易使用的编程模型解决了大数据的两大难题: 1)分布式存储hdfs: 2)分布式计算mapReduce: 但是hadoop也存在着一些问题,最主要的缺陷在于它的延迟比较严重,因为hadoop的mapReduce总是需要进行大量的I/O,即使是中间输出结果也需要通过I/O来保存到HDFS中并再次读取.如果是在大规模迭代的情况下hadoop的效率就更…
一.安装spark spark SQL是spark的一个功能模块,所以我们事先要安装配置spark,参考: https://www.cnblogs.com/lay2017/p/10006935.html 二.数据准备 演示操作将从一个类似json文件里面读取数据作为数据源,并初始化为dataframe,我们准备一个user.json文件 在/usr/local/hadoop/spark目录(可以自定义目录)下新建一个user.json文件内容如下: {"id" : "1201…
如果要全面的使用spark,你可能要安装如JDK,scala,hadoop等好些东西.可有时候我们只是为了简单地安装和测试来感受一下spark的使用,并不需要那么全面.对于这样的需要,我们其实只要安装好JDK,然后下载配置spark,两步即可. 本文选择: 1.centos 2.JDK1.8 3.spark2.3 一.JDK安装 spark需要运行在Java环境中,所以我们需要安装JDK. JDK安装配置参考:https://www.cnblogs.com/lay2017/p/7442217.h…
Hive.Spark SQL.Impala比较        Hive.Spark SQL和Impala三种分布式SQL查询引擎都是SQL-on-Hadoop解决方案,但又各有特点.前面已经讨论了Hive和Impala,本节先介绍一下SparkSQL,然后从功能.架构.使用场景几个角度比较这三款产品的异同,最后附上分别由cloudera公司和SAS公司出示的关于这三款产品的性能对比报告.1. Spark SQL简介        Spark SQL是Spark的一个处理结构化数据的程序模块.与其…
本课主题 大数据性能调优的本质 Spark 性能调优要点分析 Spark 资源使用原理流程 Spark 资源调优最佳实战 Spark 更高性能的算子 引言 我们谈大数据性能调优,到底在谈什么,它的本质是什么,以及 Spark 在性能调优部份的要点,这两点让在进入性能调优之前都是一个至关重要的问题,它的本质限制了我们调优到底要达到一个什么样的目标或者说我们是从什么本源上进行调优.希望这篇文章能为读者带出以下的启发: 了解大数据性能调优的本质 了解 Spark 性能调优要点分析 了解 Spark 在…
参考资料: 与 Hadoop 对比,如何看待 Spark 技术?:https://www.zhihu.com/question/26568496 还要不要做大数据:http://sinofool.cn/blog/archives/198 别老扯什么Hadoop了,你的数据根本不够大:http://geek.csdn.net/news/detail/2780 2015年有关Hadoop的10个预测:http://blog.jobbole.com/85181/ hadoop和大数据的关系?和spar…
07.Spark集群的进程管理 7.1 概述 Spark standalone集群模式涉及master和worker两个守护进程.master进程是管理节点,worker进程是工作节点.spark提供了很多方便启动或停止进程的脚本,风格和hadoop相似. 7.2 启动脚本 #启动所有spark进程包括master和worker,该命令在maste节点执行 $>start-all.sh #启动Master进程,该命令需要在master节点执行 $>start-master.sh #启动所有wo…
08.Spark常用RDD变换 8.1 概述 Spark RDD内部提供了很多变换操作,可以使用对数据的各种处理.同时,针对KV类型的操作,对应的方法封装在PairRDDFunctions trait中,KV类的RDD可以被隐式转换成PairRDDFunctions类型.其中很多的操作,和传统的SQL语句中的操作是对应的,只是底层换成Spark的MR计算. 8.2 常用变换 操作 解释 map 变换,将输入的每个元素进行响应操作,生成新的元素 flatMap 压扁,取出具有可迭代性质的组件中每个…
04.Spark Standalone集群搭建 4.1 集群概述 独立模式是Spark集群模式之一,需要在多台节点上安装spark软件包,并分别启动master节点和worker节点.master节点是管理节点,负责和各worker节点通信,完成worker的注册与注销.worker节点是任务执行节点,通过worker节点孵化出执行器子进程来执行任务. 4.2 集群规划 这里使用4台主机部署Spark集群,主机名称分别是s101.s102.s103和s104. s101 #Master节点 s1…
01.Spark安装与配置 1.hadoop回顾 Hadoop是分布式计算引擎,含有四大模块,common.hdfs.mapreduce和yarn. 2.并发和并行 并发通常指针对单个节点的应对多个请求的能力,是单一节点上计算能力的衡量,并行通常针对集群来讲,是利用多个节点进行分布式协同作业,我们称之为并行计算. 3.Spark 快如闪电集群计算引擎,应用于大规模数据处理快速通用引擎,使用内存计算. Speed 内存计算速度是hadoop的100倍以上,硬盘计算是Hadoop是10倍以上,Spa…
一.基本工作原理 1.特点 分布式: 主要是基于内存(少数情况基于磁盘): spark与,MapReduce最大的不同在于迭代式计算: MR分为两个阶段,map和reduce,两个阶段完了我们,job就结束了,所以我们在一个job里能做的处理很有限,只能是在map和reduce里处理: spark计算模型,可以分为n个阶段,因为它是内存迭代式的,我们在处理完一个阶段以后,可以继续往下处理很多个阶段,而不只是两个阶段,所以,spark相较于MR, 计算模型可以提供更强大的功能 二.RDD 1. 1…
05.Win7上openSSH的安装与配置 1.概述 linux上的ssh命令在网络通信场景下非常方便.现在windows也支持ssh方式和远程主机进行访问.如果只是使用ssh简单的访问功能,就需要很多文章说的还需要安装cygwin之类的软件.但是有一些注意事项需要谨记. 2.安装 2.1 下载 安装openSSH for windows软件包选择64位版本,OpenSSH-Win64.zip.如下是下载地址: https://github.com/PowerShell/Win32-OpenSS…
申明:本文出自:http://www.cnblogs.com/zlslch/p/5448857.html(该博客干货较多) 1 Java基础: 视频方面:          推荐<毕向东JAVA基础视频教程>. 链接:https://pan.baidu.com/s/1v6KxWA3kCJWAC0HpDSV4_A           提取码:msd9 学习hadoop不需要过度深入,java学习到javase,Java虚拟机的内存管理.以及多线程.线程池.设计模式.并行化多多理解实践即可. 书籍…
一. 容错机制 1.背景 要理解Spark Streaming提供的容错机制,先回忆一下Spark RDD的基础容错语义: 1.RDD,Ressilient Distributed Dataset,是不可变的.确定的.可重新计算的.分布式的数据集.每个RDD都会记住确定好的计算操作的血缘关系, (val lines = sc.textFile(hdfs file); val words = lines.flatMap(); val pairs = words.map(); val wordCou…
一.top3热门商品实时统计案例 1.概述 Spark Streaming最强大的地方在于,可以与Spark Core.Spark SQL整合使用,之前已经通过transform.foreachRDD等算子看到, 如何将DStream中的RDD使用Spark Core执行批处理操作.现在就来看看,如何将DStream中的RDD与Spark SQL结合起来使用. 案例:每隔10秒,统计最近60秒的,每个种类的每个商品的点击次数,然后统计出每个种类top3热门的商品. 2.java案例 packag…