hadoop学习day3 mapreduce笔记】的更多相关文章

1.对于要处理的文件集合会根据设定大小将文件分块,每个文件分成多块,不是把所有文件合并再根据大小分块,每个文件的最后一块都可能比设定的大小要小 块大小128m a.txt 120m 1个块 b.txt 500m 4个块 reducetask的并行度 1.reducetask并行度就是将原来的一个大任务,分成多个小任务,每一个任务负责一部分计算数据. 2.reduce任务有几个,最直观的的显示就是结果文件的个数.一个结果文件对应于一个reducetask的执行结果.底层分reducetask任务的…
前面我们使用HDFS进行了相关的操作,也了解了HDFS的原理和机制,有了分布式文件系统我们如何去处理文件呢,这就的提到hadoop的第二个组成部分-MapReduce. MapReduce充分借鉴了分而治之的思想,将一个数据的处理过程分为Map(映射)和Reduce(处理)两步.那么用户只需要将数据以需要的格式交给reduce函数处理就能轻松实现分布式的计算,很多的工作都由mapReduce框架为我们封装好,大大简化了操作流程. 1 MapReduce的编程思想 MapReduce的设计思路来源…
一.MapReduce执行过程 MapReduce运行时,首先通过Map读取HDFS中的数据,然后经过拆分,将每个文件中的每行数据分拆成键值对,最后输出作为Reduce的输入,大体执行流程如下图所示: 整个流程图具体来说:每个Mapper任务是一个java进程,它会读取HDFS中的文件,解析成很多的键值对,经过我们覆盖的map方法处理后,转换为很多的键值对再输出,整个Mapper任务的处理过程又可以分为以下几个阶段,如图所示. 在上图中,把Mapper任务的运行过程分为六个阶段. 第一阶段是把输…
案例描述 根据好友列表,推荐好友的好友 数据集 tom hello hadoop cat world hadoop hello hive cat tom hive mr hive hello hive cat hadoop world hello mr hadoop tom hive world hello tom world hive mr 代码 MyFOF.class package com.hadoop.mr.fof; import java.io.IOException; import…
案例描述 找出每个月气温最高的2天 数据集 -- :: 34c -- :: 38c -- :: 36c -- :: 32c -- :: 37c -- :: 23c -- :: 41c -- :: 27c -- :: 45c -- :: 46c -- :: 47c 代码 MyTQ.class package com.hadoop.mr.tq; import java.io.IOException; import org.apache.hadoop.conf.Configuration; impor…
mapreduce是一个运算框架,让多台机器进行并行进行运算, 他把所有的计算都分为两个阶段,一个是map阶段,一个是reduce阶段 map阶段:读取hdfs中的文件,分给多个机器上的maptask,分文件的时候是按照文件的大小分的 比如每个maptask都会处理128M的文件大小,然后有个500M的文件,就会启动ceil(500/128)个maptask 每读取文件的一行的处理,需要自己去写,注意每个maptask的处理逻辑都是一样的 处理出来的结果一定是一对key和value. mapta…
关于mapreduce的一些注意细节 如果把mapreduce程序打包放到了liux下去运行, 命令java  –cp  xxx.jar 主类名 如果报错了,说明是缺少相关的依赖jar包 用命令hadoop jar xxx.jar 类名因为在集群机器上用 hadoop jar xx.jar mr.wc.JobSubmitter 命令来启动客户端main方法时,hadoop jar这个命令会将所在机器上的hadoop安装目录中的jar包和配置文件加入到运行时的classpath中 那么,我们的客户…
1.将hdfs客户端开发所需的jar导入工程(jar包可在hadoop安装包中找到common/hdfs) 2.写代码 要对hdfs中的文件进行操作,代码中首先需要获得一个hdfs的客户端对象 Configuration conf = new Configuration(); FileSystem fs = FileSystem.get(new URI("hdfs://hdp-01:9000"),conf,"root"); FilenameFilter过滤文件 //…
MapReduce充分利用了分而治之,主要就是将一个数据量比较大的作业拆分为多个小作业的框架,而用户需要做的就是决定拆成多少份,以及定义作业本身,用户所要做的操作少了又少,真是Very Good! 一.MapReduce执行流程 下面的是MapReduce的执行过程: 最上方的用户程序链接了底层的MapReduce库,并实现了最基本的Map函数和Reduce函数. 由用户来决定将任务划分为K块(这里设为5),假设为64MB,如图左方所示分成了split0~4(文件块):然后使用fork将用户程序…
一.神马是高大上的MapReduce MapReduce是Google的一项重要技术,它首先是一个编程模型,用以进行大数据量的计算.对于大数据量的计算,通常采用的处理手法就是并行计算.但对许多开发者来说,自己完完全全实现一个并行计算程序难度太大,而MapReduce就是一种简化并行计算的编程模型,它使得那些没有多有多少并行计算经验的开发人员也可以开发并行应用程序.这也就是MapReduce的价值所在,通过简化编程模型,降低了开发并行应用的入门门槛. 1.1 MapReduce是什么 Hadoop…