拉格朗日插值法的最大毛病就是每次引入一个新的插值节点,基函数都要发生变化,这在一些实际生产环境中是不合适的,有时候会不断的有新的测量数据加入插值节点集, 因此,通过寻找n个插值节点构造的的插值函数与n+1个插值节点构造的插值函数之间的关系,形成了牛顿插值法.推演牛顿插值法的方式是归纳法,也就是计算Ln(x)- Ln+1(x),并且从n=1开始不断的迭代来计算n+1时的插值函数. 牛顿插值法的公式是: 注意:在程序中我用W 代替  计算牛顿插值函数关键是要计算差商,n阶差商的表示方式如下:   关…
插值法的伟大作用我就不说了.... 那么贴代码? 首先说一下下面几点: 1. 已有的数据样本被称之为 "插值节点" 2. 对于特定插值节点,它所对应的插值函数是必定存在且唯一的(关于这个的证明我暂时不说了,如果哪天我回头看看我的blog有点寒碜,我再再补上) 也就是说对于同样的插值样本来说,用不同方法求得的插值函数本质上其实是一样的. 3. 拉格朗日插值法依赖于每个插值节点对应的插值基函数,也就是说每个插值节点都有对应的插值基函数. 4. 拉格朗日插值函数最终由所有插值节点中每个插值节…
当插值的要求涉及到对插值函数导数的要求时,普通插值问题就变为埃尔米特插值问题.拉格朗日插值和牛顿插值的要求较低,只需要插值函数的函数值在插值点与被插函数的值相等,以此来使得在其它非插值节点插值函数的值能接近被插函数.但是有时候要求会更高,不仅要插值函数与被插函数在插值节点函数值相等,而且要求它们的导数相等. 其实此时的情况并没有变得复杂,解决这个问题的思路与拉格朗日插值法的思路是相同的,不同点在于插值条件的约束函数增加了导数一项,原来由于0~n插值节点有n+1个插值节点,需要求出n+1个线性方程…
数值计算的编程的软件很多种,也见过一些编程绘图软件的对比. 利用Python进行数值计算,需要用到numpy(矩阵) ,scipy(公式符号), matplotlib(绘图)这些工具包. 1.Linux系统中一般会带有Python.可以用命令查看是否安装Python $ python Python ( , ::) [GCC (Red Hat -)] on linux2 Type "help", "copyright", "credits" or…
h1 { margin-bottom: 0.21cm } h1.western { font-family: "Liberation Sans", sans-serif; font-size: 18pt } h1.cjk { font-family: "Noto Sans CJK SC Regular"; font-size: 18pt } h1.ctl { font-family: "Noto Sans CJK SC Regular"; fon…
本文源于一次课题作业,部分自己写的,部分借用了网上的demo 牛顿迭代法(1) x=1:0.01:2; y=x.^3-x.^2+sin(x)-1; plot(x,y,'linewidth',2);grid on;%由图像可知 根在1.05到1.15之间 syms x s0=diff(x^3-x^2+sin(x)-1,x,1); % 得到s0= cos(x) - 2*x + 3*x^2 % 迭代方程为 y=x-(x.^3-x.^2+sin(x)-1)/(cos(x) - 2.*x + 3*x.^2…
用程序来求积分的方法有很多,这篇文章主要是有关牛顿-科特斯公式. 学过插值算法的同学最容易想到的就是用插值函数代替被积分函数来求积分,但实际上在大部分场景下这是行不通的. 插值函数一般是一个不超过n次的多项式,如果用插值函数来求积分的话,就会引进高次多项式求积分的问题.这样会将原来的求积分问题带到另一个求积分问题:如何求n次多项式的积分,而且当次数变高时,会出现龙悲歌现象,误差反而可能会增大,并且高次的插值求积公式有可能会变得不稳定:详细原因不赘述. 牛顿-科特斯公式解决这一问题的办法是将大的插…
摘自<c++和面向对象数值计算>,代码简洁明快,采用模板函数,通用性增强,牛顿差分合理利用存储空间,采用Horner算法(又称秦九韶算法)提高精度,减少时间复杂度,高!确实是高!对其中代码稍加改动. #include<iostream> #include <vector> using namespace std; template<class T> T newton(const vector<T>& vx,const vector<…
Python 3.4.3 (v3.4.3:9b73f1c3e601, Feb 24 2015, 22:43:06) [MSC v.1600 32 bit (Intel)] on win32Type "copyright", "credits" or "license()" for more information.>>> 17 /3 #典型的除法返回一个浮点数5.666666666666667>>> 17 //…
一维插值 插值不同于拟合.插值函数经过样本点,拟合函数一般基于最小二乘法尽量靠近所有样本点穿过.常见插值方法有拉格朗日插值法.分段插值法.样条插值法. 拉格朗日插值多项式:当节点数n较大时,拉格朗日插值多项式的次数较高,可能出现不一致的收敛情况,而且计算复杂.随着样点增加,高次插值会带来误差的震动现象称为龙格现象. 分段插值:虽然收敛,但光滑性较差. 样条插值:样条插值是使用一种名为样条的特殊分段多项式进行插值的形式.由于样条插值可以使用低阶多项式样条实现较小的插值误差,这样就避免了使用高阶多项…