PCA和LDA降维的比较】的更多相关文章

PCA 主成分分析方法,LDA 线性判别分析方法,可以认为是有监督的数据降维.下面的代码分别实现了两种降维方式: print(__doc__) import matplotlib.pyplot as plt from sklearn import datasets from sklearn.decomposition import PCA from sklearn.discriminant_analysis import LinearDiscriminantAnalysis iris = dat…
四大机器学习降维算法:PCA.LDA.LLE.Laplacian Eigenmaps 机器学习领域中所谓的降维就是指采用某种映射方法,将原高维空间中的数据点映射到低维度的空间中.降维的本质是学习一个映射函数 f : x->y,其中x是原始数据点的表达,目前最多使用向量表达形式. y是数据点映射后的低维向量表达,通常y的维度小于x的维度(当然提高维度也是可以的).f可能是显式的或隐式的.线性的或非线性的. 目前大部分降维算法处理向量表达的数据,也有一些降维算法处理高阶张量表达的数据.之所以使用降维…
最近在找降维的解决方案中,发现了下面的思路,后面可以按照这思路进行尝试下: 链接:http://www.36dsj.com/archives/26723 引言 机器学习领域中所谓的降维就是指采用某种映射方法,将原高维空间中的数据点映射到低维度的空间中.降维的本质是学习一个映射函数 f : x->y,其中x是原始数据点的表达,目前最多使用向量表达形式. y是数据点映射后的低维向量表达,通常y的维度小于x的维度(当然提高维度也是可以的).f可能是显式的或隐式的.线性的或非线性的. 目前大部分降维算法…
在线性判别分析LDA原理总结中,我们对LDA降维的原理做了总结,这里我们就对scikit-learn中LDA的降维使用做一个总结. 1. 对scikit-learn中LDA类概述 在scikit-learn中, LDA类是sklearn.discriminant_analysis.LinearDiscriminantAnalysis.那既可以用于分类又可以用于降维.当然,应用场景最多的还是降维.和PCA类似,LDA降维基本也不用调参,只需要指定降维到的维数即可. 2. LinearDiscrim…
一.PCA     在讲PCA之前,首先有人要问了,为什么我们要使用PCA,PCA到底是干什么的?这里先做一个小小的解释,举个例子:在人脸识别工作中一张人脸图像是60*60=3600维,要处理这样的数据,计算量肯定很大,为了能降低后续计算的复杂度,节约时间,我们在处理高维数据的时候,在“预处理”阶段通常要先对原始数据进行降维,而PCA就是做的这个事.本质上讲,PCA就是讲高维的数据通过线性变换投影到低维空间上去,这个投影可不是随便投投,我们要找出最能代表原始数据的投影方法,亦即不失真,可以这么理…
由于涉及内容较多,这里转载别人的博客: http://blog.csdn.net/sunmenggmail/article/details/8071502 其实主要在于:PCA与LDA的变换矩阵不同,由于他们在处理信息目标上存在差异: PCA:主要使得原向量在其上的投影最大: LDA:主要使得通过投影后的向量最具区分性. 原理在上面的博客里比较全面了.…
sklearn LDA降维算法 LDA(Linear Discriminant Analysis)线性判断别分析,可以用于降维和分类.其基本思想是类内散度尽可能小,类间散度尽可能大,是一种经典的监督式降维/分类技术. sklearn代码实现 #coding=utf-8 import pandas as pd import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklea…
最近跑深度学习,提出的feature是4096维的,放到我们的程序里,跑得很慢,很慢.... 于是,一怒之下,就给他降维处理了,但是matlab 自带的什么pca( ), princomp( )函数,搞不清楚怎么用的,表示不大明白,下了一个软件包: 名字:Matlab Toolbox for Dimensionality Reduction 链接:http://lvdmaaten.github.io/drtoolbox/ Currently, the Matlab Toolbox for Dim…
PCA主成分分析 import numpy as np import pandas as pd import matplotlib.pyplot as plt # 用鸢尾花数据集 展示 降维的效果 from sklearn.datasets import load_iris iris = load_iris() data = iris.data # 特征值 target = iris.target # 目标值 # 绘制平面散点图 plt.scatter(data[:,0],data[:,1],c…
PCA(主成分分析) PCA是一种无监督降维方式,它将数据投影到一组互相正交的loading vectors(principal axes)之上,并保证投影后的点在新的坐标轴上的方差最大 记数据集\(X=\begin{bmatrix}\begin{smallmatrix}\vec{x_1}\\\vec{x_2}\\\vdots\\\vec{x_n}\end{smallmatrix}\end{bmatrix}\)为n行p列的矩阵(n个数据,每个数据p维),特征均值为\(\vec{\mu}=(\mu…