风格迁移 <从锅炉工到AI专家(8)>中我们介绍了一个"图片风格迁移"的例子.因为所引用的作品中使用了TensorFlow 1.x的代码,算法也相对复杂,所以文中没有仔细介绍风格迁移的原理. 今天在TensorFlow 2.0的帮助,和新算法思想的优化下,实现同样功能的代码量大幅减少,结构也越发清晰.所以今天就来讲讲这个话题. "风格迁移"指的是将艺术作品的笔触.技法等表现出来的视觉效果,应用在普通照片上,使得所生成的图片,类似使用同样笔触.技法所绘制完…
引自:深度学习实践:使用Tensorflow实现快速风格迁移 一.风格迁移简介 风格迁移(Style Transfer)是深度学习众多应用中非常有趣的一种,如图,我们可以使用这种方法把一张图片的风格“迁移”到另一张图片上: 然而,原始的风格迁移(论文地址:https://arxiv.org/pdf/1508.06576v2.pdf)的速度是非常慢的.在GPU上,生成一张图片都需要10分钟左右,而如果只使用CPU而不使用GPU运行程序,甚至需要几个小时.这个时间还会随着图片尺寸的增大而迅速增大.…
Android之拨号界面图片风格,无信息默认显示界面修改 点开Dialer app,出现拨号,联系人,收藏三个选项卡,也就是三个Fragment,在三个界面都没有信息的时候会显示一个时钟,联系人,收藏的三个 图片,怎么样能调整他们的位置以及大小呢? 首先找到图片的位置在哪里,路径为package/app/Dialer/res/drawable-xxhdpi(这个图片所在的文件夹就看手机对应的分辨率了)/empty_call_log.png package/app/Dialer/res/drawa…
CNN结构:图片风格分类效果已成.可以在色彩空间对图片风格进行分类,并进行目标分类. StyleAI构架:FasterRCnn + RandomTrees 为何不使用MaskRCNN? MaskRCNN-Windows-C++版本未翻译完成 结果分析: 一个检测框架+一个分类框架,主要作用在于特征提取.…
简介 这里的生成式网络是广义的生成式,不仅仅指gan网络,还有风格迁移中的类自编码器网络,以及语义分割中的类自编码器网络,因为遇到次数比较多,所以简单的记录一下. 背景 1.像素和数字 图像处理目标一般就是RGB三色通道,原始图像解码后是0~255,这个矩阵传给matplotlib就可以直接绘图了,与此同0~1的图像matplotlib也是可以接受的,关于这点,我们来看看文档是怎么说的, Elements of RGB and RGBA arrays represent pixels of an…
『cs231n』卷积神经网络的可视化应用 文件目录 vgg16.py import os import numpy as np import tensorflow as tf from download import exist_or_download model_url = 'https://s3.amazonaws.com/cadl/models/vgg16.tfmodel' model_dir = 'vgg16/' model_name = 'vgg16.tfmodel' def mode…
图像风格迁移 最后要生成的图片是怎样的是难以想象的,所以朴素的监督学习方法可能不会生效, Content Loss 根据输入图片和输出图片的像素差别可以比较损失 \(l_{content} = \frac{1}{2}\sum (C_c-T_c)^2\) Style Loss 从中间提取多个特征层来衡量损失. 利用\(Gram\) \(Matrix\)(格拉姆矩阵)可以衡量风格的相关性,对于一个实矩阵\(X\),矩阵\(XX^T\)是\(X\)的行向量的格拉姆矩阵 \(l_{style}=\sum…
风格迁移: 在内容上尽量与基准图像保持一致,在风格上尽量与风格图像保持一致. 1. 使用预训练的VGG19网络提取特征 2. 损失函数之一是"内容损失"(content loss),代表合成的图像的特征与基准图像的特征之间的L2距离,保证生成的图像内容和基准图像保持一致. 3. 损失函数之二是"风格损失"(style loss),代表合成图像的特征与风格图像的特征之间的Gram矩阵之间的差异,保证生成图像的风格和风格图像保持一致. 4. 损失函数之三是"差…
风格迁移 风格迁移算法经历多次定义和更新,现在应用在许多智能手机APP上. 风格迁移在保留目标图片内容的基础上,将图片风格引用在目标图片上. 风格本质上是指在各种空间尺度上图像中的纹理,颜色和视觉图案;内容是图像的高级宏观结构. 实现风格迁移背后的关键概念与所有深度学习算法的核心相同:定义了一个损失函数来指定想要实现的目标,并最大限度地减少这种损失. 知道自己想要实现的目标:在采用参考图像的样式的同时保留原始图像的内容.如果我们能够在数学上定义内容和样式,那么最小化的适当损失函数将是以下内容:…
近日,期刊平台 Distill 发布了谷歌研究人员的一篇文章,介绍一个适用于神经网络可视化和风格迁移的强大工具:可微图像参数化.这篇文章从多个方面介绍了该工具. 图像分类神经网络拥有卓越的图像生成能力.DeepDream [1].风格迁移 [2] 和特征可视化 [3] 等技术利用这种能力作为探索神经网络内部原理的强大工具,并基于神经网络把艺术创作推进了一小步. 所有这些技术基本上以相同的方式工作.计算机视觉领域使用的神经网络拥有图像的丰富内部表征.我们可以使用该表征描述我们希望图像具备的特性(如…
1 什么是人脸识别( what is face recognition ) 在相关文献中经常会提到人脸验证(verification)和人脸识别(recognition). verification就是输入图像,名字或id,判断是不是.而人脸识别是输入图像,输出这个人的名字或id. 我们先构造一个准确率高的verification,然后再把它应用到人脸识别中. 2 一次学习( One-shot learning ) 假设现在要做一个人脸识别,但是你的数据库对于每个人只有一张照片,要怎么做? 这个…
4.4特殊应用:人脸识别和神经网络风格转换 觉得有用的话,欢迎一起讨论相互学习~Follow Me 4.6什么是神经网络风格转换neural style transfer 将原图片作为内容图片Content,风格图片Style,生成的图片用Generated image 表示. 4.7深度卷积神经网络在学什么What are deep ConvNets learning Zeiler, Matthew D., and Rob Fergus. "Visualizing and understand…
本课介绍了近年来人们对理解卷积网络这个“黑盒子”所做的一些可视化工作,以及deepdream和风格迁移. 1 卷积网络可视化 1.1 可视化第一层的滤波器 我们把卷积网络的第一层滤波器权重进行可视化(权重值缩放到0-255之间)可以发现: 第一层的滤波器可以看做模版匹配,那么它寻找的模式就是一些边和线.也就是说,当滤波器滑动到边和线的时候,会有较大的激活值.这跟人脑的功能几乎是一致的. 然而,我们只能可视化第一层滤波器得到如此有意义的结论,可视化后面的滤波器,我们将无法看到什么有用的东西. 1.…
注:原项目名叫deep-painterly-harmonization,这里我缩写下称呼其为“DPH” 注:原项目GIT链接:https://github.com/luanfujun/deep-painterly-harmonization DPH是深度学习中的一个应用方向,被称为风格迁移,即将A图的风格迁移到B图,DPH的作者在风格迁移的基础上实现了将B图无缝嵌入A图,示例如下图所示: 我们就不讨论具体技术细节了,这里简单地写一个安装和使用教程给大家. 坑描述: 1)一定要用物理机,而且是N卡…
作者:Longway Date:2020-04-25 来源:单图像三维重建.2D到3D风格迁移和3D DeepDream 项目网址:http://hiroharu-kato.com/projects_en/neural_renderer.html 代码网址:https://github.com/hiroharu-kato/neural_renderer 论文名称:Neural 3D Mesh Renderer(CVPR2018) 概述 对于二维图像背后的三维世界建模,哪一种三维表示最合适?现在常…
Gram定义 n维欧式空间中任意k个向量之间两两的内积所组成的矩阵,称为这k个向量的格拉姆矩阵(Gram matrix) 根据定义可以看到,每个Gram矩阵背后都有一组向量,Gram矩阵就是由这一组向量两两内积得到的,先说一下向量内积是做什么的. 向量的内积,也叫向量的点乘,对两个向量执行内积运算,就是对这两个向量对应位一一相乘之后求和的操作,内积的结果是一个标量.例如对于向量a和向量b:                             a和b的内积公式为: 两个向量的内积有什么用呢?一…
原文转载自「刘悦的技术博客」https://v3u.cn/a_id_201 前段时间,业界鼎鼎有名的动漫风格转化滤镜库AnimeGAN发布了最新的v2版本,一时间街谈巷议,风头无两.提起二次元,目前国内用户基数最大的无疑是抖音客户端,其内置的一款动画转换滤镜"变身漫画",能够让用户在直播中,把自己的实际外貌转换为二次元"画风".对于二次元粉丝来说,"打破次元壁,变身纸片人"这种自娱自乐方式可谓屡试不爽: 但是看多了就难免有些审美疲劳,千人一面的&…
(一)下载inception-v3--见TensorFlow(十四) (二)准备训练用的图片集,因为我没有图片集,所以写了个自动抓取百度图片的脚本-见抓取百度图片 (三)创建retrain.py文件,进行重训练.(因为之前遇到不同版本上的不同,遇到过坑,上源码) # -*- coding: utf-8 -*- # @Author : Felix Wang # @time : 2018/6/27 11:46 # Copyright 2015 The TensorFlow Authors. All…
(一):进入GitHub下载模型-->下载地址 因为我们需要slim模块,所以将包中的slim文件夹复制出来使用. (1):在slim中新建images文件夹存放图片集 (2):新建model文件夹用来放模型 (3):在datasets文件夹中新建myimages.py文件 # Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0…
http://gitbook.cn/gitchat/column/59f7e38160c9361563ebea95/topic/59f7e86d60c9361563ebeee5 wiki.jikexueyuan.com/project/tensorflow-zh/tutorials/mnist_beginners.html 一.简介 手写图片识别的实现,分为三步: 1,数据的准备 2,模型的设计 3,代码实现 我的另一篇博文-神经网络的解释 什么是神经网络 input层代表将二维数组从所有行都排…
import os import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 OUTPUT_NODE = 10 LAYER1_NODE = 500 def get_weight_variable(shape, regularizer): weights = tf.get_variable("weights", shape, initializer…
迁移学习基本概念 迁移学习是这两年比较火的一个话题,主要原因是在当前的机器学习中,样本数据的获取是成本最高的一块.而迁移学习可以有效的把原有的学习经验(对于模型就是模型本身及其训练好的权重值)带入到新的领域,从而不需要过多的样本数据,也能达到大批量数据所达成的效果,进一步节省了学习的计算量和时间. MobileNet V2是由谷歌在2018年初发布的一个视觉模型,在Keras中已经内置的并使用ImageNet完成了训练,可以直接拿来就用,这个我们在本系列第五篇中已经提过了.MobileNet V…
1.项目介绍 神经风格转换 (NST) 是深部学习中最有趣的技术之一.它合并两个图像, 即 内容图像 C(content image) 和 样式图像S(style image), 以生成图像 G(generated image).生成的图像 G 将图像 C 的 内容与图像S的 样式组合在一起. 2.模型 利用迁移学习的技巧,模型采用预训练的VGG19网络.预训练的模型来自 MatConvNet. http://www.vlfeat.org/matconvnet/pretrained/ . 模型结…
1,A Neural Algorithm of atistic Style https://axiv.org/pdf/1508.06576.pdf 如何定义图片的内容,风格: 定义内容:在vggnet上,较低的层更注重图片局部的细节,较高的层更注重全局,将vgg关键层的feature 作为图片内容 定义风格:使用gram matrix,特征图之间的点积.…
1.简介 本教程主要讲解如何实现由 Leon A. Gatys,Alexander S. Ecker和Matthias Bethge提出的Neural-Style 算法.Neural-Style 或者叫 Neural-Transfer,可以让你使用一种新的风格将指定的图片进行重构.这个算法使用三张图片,一张输入图片,一张内容图片和一张风格图片,并将输入的图片变得与内容图片相似,且拥有风格图片的优美风格. 2.基本原理 我们定义两个间距,一个用于内容D_C,另一个用于风格D_S.D_C测量两张图片…
由于zimg特殊的图片存储结构及图片命名规则,其迁移数据应该当相当简单的,仅把对应的存储图片数据的文件夹复制即可.往往简单的东西总会有一些成本在里面,下面是我简单的迁移测试过程中遇到的一些问题,仅供参考[两服务的配置文件异同不影响数据迁移] 先排除低版本迁移高版本产生的问题,比如zimg 2.x 文件格式为0_0,但新版本zimg 3.x存储格式变为0*0. 1.直接从A服务器,将数据下载到windows本地,再将本地文件上传另一个服务器B 2.直接从浏览器访问B服务上的图片地址,结果显示404…
ContentLoss 首先是要定义一个内容差异损失函数,这里直接调用functional.mse_loss(input,self.target)就可以计算出其内容差异损失. 注意这里一般是定义一个网络模型,输入和输出一直,这样才在后面方便直接求出 loss class ContentLoss(nn.Module): def __init__(self, target,): super(ContentLoss, self).__init__() # we 'detach' the target…
前言 上一章为大家介绍过深度学习的基础和多层感知机 MLP 的应用,本章开始将深入讲解卷积神经网络的实用场景.卷积神经网络 CNN(Convolutional Neural Networks,ConvNet)是一种特殊的深度学习神经网络,近年来在物体识别.图像重绘.视频分析等多个层面得到了广泛的应用.本文将以VGG16预训练模型为例子,从人脸识别.预训练模型.图片风格迁移.滤波分析.热力图等多过领域介绍 CNN 的应用. 目录 一.卷积神经网络的原理 二.构建第一个 CNN 对 MNIST 数字…
TF中文社区 TF_GOOGLE官方代码学习 1.TensorFlow-Slim TF-Slim 是 tensorflow 较新版本的扩充包,可以简化繁杂的网络定义,其中也提供了一些demo: AlexNet InceptionV1/V2/V3 OverFeat ResNet VGG 例如 VGG-16 网络,寥寥数行就可以定义完毕: def vgg16(inputs): with slim.arg_scope([slim.conv2d, slim.fully_connected], activ…
GAN:通过 将 样本 特征 化 以后, 告诉 模型 哪些 样本 是 黑 哪些 是 白, 模型 通过 训练 后, 理解 了 黑白 样本 的 区别, 再输入 测试 样本 时, 模型 就可以 根据 以往 的 经验 判断 是 黑 还是 白. 与 这些 分类 的 算法 不同, GAN 的 基本 原理 是, 有两 个 相生相克 的 模型 Generator 和 Discriminator,Generator 随机 生成 样本, Discriminator 将 真实 样本 标记 为 Real, 将 Gene…