目录 sigmod交叉熵 Softmax转换 Softmax交叉熵 参考资料 sigmod交叉熵 Sigmod交叉熵实际就是我们所说的对数损失,它是针对二分类任务的损失函数,在神经网络中,一般输出层只有一个结点. 假设y为样本标签,_y为全连接网络的输出层的值,那么,这个对数损失定义为 PS:这个是可以用极大似然估计推导出来的 举例: y=0,_y=0.8,那此时的sigmod交叉熵为1.171 import numpy as np def sigmod(x): return 1/(1+np.e…
目录 网络结构 两大创新点 参考资料 第一个典型的CNN是LeNet5网络结构,但是第一个引起大家注意的网络却是AlexNet,Alex Krizhevsky其实是Hinton的学生,这个团队领导者是Hinton,于2012年发表论文. AlexNet有60 million个参数和65000个 神经元,五层卷积,三层全连接网络,最终的输出层是1000通道的softmax.AlexNet利用了两块GPU进行计算,大大提高了运算效率,并且在ILSVRC-2012竞赛中获得了top-5测试的15.3%…
在统计学中,损失函数是一种衡量损失和错误(这种损失与“错误地”估计有关,如费用或者设备的损失)程度的函数.假设某样本的实际输出为a,而预计的输出为y,则y与a之间存在偏差,深度学习的目的即是通过不断地训练迭代,使得a越来越接近y,即 a - y →0,而训练的本质就是寻找损失函数最小值的过程. 常见的损失函数为两种,一种是均方差函数,另一种是交叉熵函数.对于深度学习而言,交叉熵函数要优于均方差函数,原因在于交叉熵函数配合输出层的激活函数如sigmoid或softmax函数能更快地加速深度学习的训…
目录 使用非对称卷积分解大filters 重新设计pooling层 辅助构造器 使用标签平滑 参考资料 在<深度学习面试题20:GoogLeNet(Inception V1)>和<深度学习面试题26:GoogLeNet(Inception V2)>中对前两个Inception版本做了介绍,下面主要阐述V3版本的创新点 使用非对称卷积分解大filters InceptionV3中在网络较深的位置使用了非对称卷积,他的好处是在不降低模型效果的前提下,缩减模型的参数规模,在<深度学…
目录 产生背景 举例 参考资料 产生背景 之前在深度学习面试题16:小卷积核级联卷积VS大卷积核卷积中介绍过小卷积核的三个优势: ①整合了三个非线性激活层,代替单一非线性激活层,增加了判别能力. ②减少了网络参数. ③减少了计算量 在<Rethinking the Inception Architecture for Computer Vision>中作者还想把小卷积核继续拆解,从而进一步增强前面的优势 返回目录 举例 一个3*3的卷积可以拆解为:一个3*1的卷积再串联一个1*3的卷积,实验证…
目录 为什么要用激活函数 sigmod tanh ReLU LeakyReLU ReLU6 参考资料 为什么要用激活函数 在神经网络中,如果不对上一层结点的输出做非线性转换的话,再深的网络也是线性模型,只能把输入线性组合再输出(如下图),不能学习到复杂的映射关系,因此需要使用激活函数这个非线性函数做转换. 返回目录 sigmod Sigmod激活函数和导函数分别为 对应的图像分别为:    对应代码为:   Sigmod(x)的缺点: ①输出范围在0~1之间,均值为0.5,需要做数据偏移,不方便…
目录 BN的由来 BN的作用 BN的操作阶段 BN的操作流程 BN可以防止梯度消失吗 为什么归一化后还要放缩和平移 BN在GoogLeNet中的应用 参考资料 BN的由来 BN是由Google于2015年提出,论文是<Batch Normalization_ Accelerating Deep Network Training by Reducing Internal Covariate Shift>,这是一个深度神经网络训练的技巧,主要是让数据的分布变得一致,从而使得训练深层网络模型更加容易…
目录 简介 网络结构 对应代码 网络说明 参考资料 简介 2014年,GoogLeNet和VGG是当年ImageNet挑战赛(ILSVRC14)的双雄,GoogLeNet获得了第一名.VGG获得了第二名,这两类模型结构的共同特点是层次更深了.VGG继承了LeNet以及AlexNet的一些框架结构,而GoogLeNet则做了更加大胆的网络结构尝试,虽然深度只有22层,但大小却比AlexNet和VGG小很多,GoogleNet参数为500万个,AlexNet参数个数是GoogleNet的12倍,VG…
目录 产生背景 工作原理 参考资料 产生背景 假设选用softmax交叉熵训练一个三分类模型,某样本经过网络最后一层的输出为向量x=(1.0, 5.0, 4.0),对x进行softmax转换输出为: 假设该样本y=[0, 1, 0],那损失loss: 按softmax交叉熵优化时,针对这个样本而言,会让0.721越来越接近于1,因为这样会减少loss,但是这有可能造成过拟合.可以这样理解,如果0.721已经接近于1了,那么网络会对该样本十分“关注”,也就是过拟合.我们可以通过标签平滑的方式解决.…
目录 第一层卷积换为分离卷积 一些层的卷积核的个数发生了变化 多个小卷积核代替大卷积核 一些最大值池化换为了平均值池化 完整代码 参考资料 第一层卷积换为分离卷积 net = slim.separable_conv2d( inputs, depth(64), [7, 7], depth_multiplier=depthwise_multiplier, stride=2, padding='SAME', weights_initializer=trunc_normal(1.0), scope=en…