深度学习大牛Yoshua Bengio今天AAAI四小时深度学习教学讲座非常详尽,PPT有230页:http://t.cn/zQ4VRVx 如觉太长,可看他33页综述文:http://t.cn/zjkx49Z 感觉Bengio深度学习理论自成一家,与Hinton, Ng,Socher,Lecun等风格不同,主要从特征学习出发,讲述了DL近年的进展,以及各种最新的trick.…
原文摘要:深度学习可以让那些拥有多个处理层的计算模型来学习具有多层次抽象的数据的表示.这些方法在很多方面都带来了显著的改善,包含最先进的语音识别.视觉对象识别.对象检測和很多其他领域,比如药物发现和基因组学等.深度学习可以发现大数据中的复杂结构.它是利用BP算法来完毕这个发现过程的.BP算法可以指导机器怎样从前一层获取误差而改变本层的内部參数,这些内部參数可以用于计算表示.深度卷积网络在处理图像.视频.语音和音频方面带来了突破,而递归网络在处理序列数据.比方文本和语音方面表现出了闪亮的一面. 机…
目录 摘要 1.引言: 2.背景 2.1 数据集 2.2评价指标 3.3D点云分割 3.1 3D语义分割 3.1.1 基于投影的方法 多视图表示 球形表示 3.1.2 基于离散的方法 稠密离散表示 稀疏的离散表示 3.1.3 混合方法 3.1.4 基于点的方法 逐点MLP方法 点卷积方法 基于RNN方法 基于图方法 3.2 实例分割 3.2.1 基于候选框的方法 3.2.2 不需要候选框的方法 3.3 部件分割 3.4 总结 4. 结论 3D点云深度学习:综述(3D点云分割部分) Deep Le…
目录 摘要 1.引言: 2.背景 2.1 数据集 2.2评价指标 3.3D形状分类 3.1基于多视图的方法 3.2基于体素的方法 3.3基于点的方法 3.3.1 点对多层感知机方法 3.3.2基于卷积的方法 3.3.2.1 3D连续卷积网络 3.3.2.2 3D离散卷积网络 3.3.3基于图的方法 3.3.3.1 空间域中的基于图的方法 3.3.3.2 谱域中的基于图的方法 3.3.4基于层级数据结构的方法 3.3.5其他方法 3.4总结 3D点云深度学习:综述(点云形状识别部分) Deep L…
深度学习 严恩·乐库  约书亚•本吉奥  杰弗里·希尔顿 摘要深度学习是计算模型,是由多个处理层学习多层次抽象表示的数据.这些方法极大地提高了语音识别.视觉识别.物体识别.目标检测和许多其他领域如药物发现和基因组学的最高水平.深学习发现复杂的结构,在大数据集,通过使用反向传播算法来说明如何一台机器应改变其内部参数,用于计算每个层中表示从前一层的表示.深度卷积网络在处理图像.视频.语音等方面都带来了新的突破,而递归网络在连续的数据,如文本和语音有更出彩的表现.引言机器学习技术增强了现代社会的许多方…
本文转自:http://mp.weixin.qq.com/s/aAHbybdbs_GtY8OyU6h5WA 专题 | 深度强化学习综述:从AlphaGo背后的力量到学习资源分享(附论文) 原创 2017-01-28 Yuxi Li 机器之心 选自arXiv 作者:Yuxi Li 编译:Xavier Massa.侯韵楚.吴攀   摘要 本论文将概述最近在深度强化学习(Deep Reinforcement Learning)方面喜人的进展.本文将从深度学习及强化学习的背景知识开始,包括了对实验平台的…
[说在前面]本人博客新手一枚,象牙塔的老白,职业场的小白.以下内容仅为个人见解,欢迎批评指正,不喜勿喷![握手][握手] 1. 分享个人对于人工智能领域的算法综述:如果你想开始学习算法,不妨先了解人工智能有哪些方向? 1.1 机器学习综述 1.2 深度学习综述 1.3 强化学习综述 1.4 知识图谱综述 1.5 对接其他前沿技术 2. 分享个人对于新手入门学习路线和学习资源的推荐 2.1 python编程学习路线及笔记 2.2 机器学习专题学习路线及笔记 2.3 深度学习专题学习路线及笔记 2.…
转载来源:http://blog.csdn.net/fengbingchun/article/details/50087005 这篇文章主要是为了对深度学习(DeepLearning)有个初步了解,算是一个科普文吧,文章中去除了复杂的公式和图表,主要内容包括深度学习概念.国内外研究现状.深度学习模型结构.深度学习训练算法.深度学习的优点.深度学习已有的应用.深度学习存在的问题及未来研究方向.深度学习开源软件. 一.            深度学习概念 深度学习(Deep Learning, DL…
转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最…
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最新版本<神经网络与深度学习综述>本综述的特点是以时间排序,从1940年开始讲起,到60-80…
原文:http://developer.51cto.com/art/201501/464174.htm 编者按:本文收集了百来篇关于机器学习和深度学习的资料,含各种文档,视频,源码等.而且原文也会不定期的更新,望看到文章的朋友能够学到更多. <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost 到随机森林.Deep Learning. <Deep Learning i…
转载:http://dataunion.org/8463.html?utm_source=tuicool&utm_medium=referral <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智…
编者按:本文收集了百来篇关于机器学习和深度学习的资料,含各种文档,视频,源码等.而且原文也会不定期的更新,望看到文章的朋友能够学到更多. <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost 到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室 Ju…
感谢:https://github.com/ty4z2008/Qix/blob/master/dl.md <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost 到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室 Jurgen Schmidhuber…
编者按:本文收集了百来篇关于机器学习和深度学习的资料,含各种文档,视频,源码等.并且原文也会不定期的更新.望看到文章的朋友能够学到很多其它. <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍非常全面,从感知机.神经网络.决策树.SVM.Adaboost 到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室…
自学成才秘籍!机器学习&深度学习经典资料汇总 转自:中国大数据: http://www.thebigdata.cn/JiShuBoKe/13299.html [日期:2015-01-27] 来源:亚马逊  作者: [字体:大 中 小] 小编都深深的震惊了,到底是谁那么好整理了那么多干货性的书籍.小编对此人表示崇高的敬意,小编不是文章的生产者,只是文章的搬运工. <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感…
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最新版本<神经网络与深度学习综述>本综述的特点是以时间排序,从1940年开始讲起,到60-80…
Reference:Theano入门三部曲 http://deeplearning.net/tutorial/logreg.html  (Softmax回归) http://deeplearning.net/tutorial/mlp.html (MLP多层感知器) http://deeplearning.net/tutorial/lenet.html (简易LeNet卷积神经网络) 为什么要使用Theano? 深度学习最好使用一些库,比如Theano.主要是因为反向传播调整参数时,需要求导.链式…
http://blog.sciencenet.cn/blog-517721-852551.html 学习笔记:深度学习是机器学习的突破 2006-2007年,加拿大多伦多大学教授.机器学习领域的泰斗Geoffrey Hinton和他的学生RuslanSalakhutdinov在<科学>以及在Neural computation 和 NIPS上发表了4篇文章,这些文章有两个主要观点: 1)多隐层的人工神经网络具有优异的特征学习能力,学习得到的特征对数据有更本质的刻画,从而有利于可视化或分类: 2…
http://blog.sciencenet.cn/blog-517721-852551.html 学习笔记:深度学习是机器学习的突破 2006-2007年,加拿大多伦多大学教授.机器学习领域的泰斗Geoffrey Hinton和他的学生RuslanSalakhutdinov在<科学>以及在Neural computation 和 NIPS上发表了4篇文章,这些文章有两个主要观点: 1)多隐层的人工神经网络具有优异的特征学习能力,学习得到的特征对数据有更本质的刻画,从而有利于可视化或分类: 2…
上一篇文章提到了数据挖掘.机器学习.深度学习的区别:http://www.cnblogs.com/charlesblc/p/6159355.html 深度学习具体的内容可以看这里: 参考了这篇文章:https://zhuanlan.zhihu.com/p/20582907?refer=wangchuan  <王川: 深度学习有多深, 学了究竟有几分? (一)> 笔记:神经网络的研究,因为人工智能的一位大牛Marvin Minsky的不看好,并且出书说明其局限性,而出现二十年的长期低潮.   在…
126 篇殿堂级深度学习论文分类整理 从入门到应用 | 干货 雷锋网 作者: 三川 2017-03-02 18:40:00 查看源网址 阅读数:66 如果你有非常大的决心从事深度学习,又不想在这一行打酱油,那么研读大牛论文将是不可避免的一步.而作为新人,你的第一个问题或许是:“论文那么多,从哪一篇读起?” 本文将试图解决这个问题——文章标题本来是:“从入门到绝望,无止境的深度学习论文”.请诸位备好道具,开启头悬梁锥刺股的学霸姿势. 开个玩笑. 但对非科班出身的开发者而言,读论文的确可以成为一件很…
机器学习(Machine Learning)&深度学习(Deep Learning)资料 機器學習.深度學習方面不錯的資料,轉載. 原作:https://github.com/ty4z2008/Qix/blob/master/dl.md 原作作者會不斷更新.本文更新至2014-12-21 <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍非常全面.从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep L…
本文用户记录黄埔学院学习的心得,并补充一些内容. 课程2:十行代码高效完成深度学习POC,主讲人为百度深度学习技术平台部:陈泽裕老师. 因为我是CV方向的,所以内容会往CV方向调整一下,有所筛检. 课程主要有以下三个方面的内容: 深度学习POC的基本流程 实用预训练模型应用工具快速验证 通用模型一键检测 十行代码完成工业级文本分类 自动化调参AutoDL Finetuner 一.深度学习POC的基本流程 1.1  深度学习发展历程 2006年,这一年多伦多大学的Geoffrey Hinton教授…
  小编都深深的震惊了,到底是谁那么好整理了那么多干货性的书籍.小编对此人表示崇高的敬意,小编不是文章的生产者,只是文章的搬运工. <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen…
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最新版本<神经网络与深度学习综述>本综述的特点是以时间排序,从1940年开始讲起,到60-80…
转自 飞鸟各投林 <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最新版本<神经网络与深度学习综述>本综述的特点是以时间排序,从1940年开始…
深度学习 - 维基百科,自由的百科全书 https://zh.wikipedia.org/wiki/%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0 深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法. 深度学习是机器学习中一种基于对数据进行表征学习的算法.观测值(例如一幅图像)可以使用多种方式来表示,如每个像素强度值的向量,或者更抽象地表示成一系列边.特定形状的区域等.而使用某些特…
深度学习其实要入门也很简单,不要被深度学习.卷积神经网络CNN.循环神经网络RNN等某些“高大上”的专有名词所吓到或被忽悠,要相信大道至简,一个高中生只要愿意学也完全可以入门级了解并依赖一些成熟的Tensorflow.pytorch等框架去实现一些常用模型.有关<深度学习>的综述或翻译已有很多,在此不在赘述,深度学习是机器学习的一种,今天将从更广的视觉来分析. 图1  深度学习是机器学习的子问题 1.机器学习 机器学习(Machine Learning, ML)是指利用机器(计算机)从有限的观…
http://wallstreetcn.com/node/248376 借助深度学习,多处理层组成的计算模型可通过多层抽象来学习数据表征( representations).这些方法显著推动了语音识别.视觉识别.目标检测以及许多其他领域(比如,药物发现以及基因组学)的技术发展.利用反向传播算法(backpropagation algorithm)来显示机器将会如何根据前一层的表征改变用以计算每层表征的内部参数,深度学习发现了大数据集的复杂结构.深层卷积网络(deep convolutional…