在进行图像处理过程中,我们常常会用到梯度迭代求解大型线性方程组.今天在用cuda对神秘矩阵进行求解的时候.出现了缺少dll的情况: 报错例如以下图: watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvZ2dnZ19nZ2c=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt=""> 缺少cusparse32_60.dll 缺失c…
CUDA并行编程思维过程 1)确定应用程序中需要且可以并行化的部分 2)将并行化代码中需要用到的数据分离出来,具体方法是用API函数在并行技术设备上分配内存空间 3)用API函数将数据传输到并行计算设备上 4)在并行化部分开发一个kernel函数,该函数由其中个别线程执行 5)并行线程执行且启动kernel函数 6)最后调用API函数将数据传回主机处理器…
前言 并行就是让计算中相同或不同阶段的各个处理同时进行. 目前有很多种实现并行的手段,如多核处理器,分布式系统等,而本专题的文章将主要介绍使用 GPU 实现并行的方法. 参考本专题文章前请务必搭建好 CUDA 开发平台,搭建方法可以参考上一篇文章. GPU 并行的优缺点 优点: 1. 显存具有更大的内存带宽 2. GPU 具有更大量的执行单元 3. 价格低廉 缺点: 1. 对于不能高度并行化的工作,能带来帮助不大. 2. 对于绝大多数显卡型号,CUDA 仅支持 float 类型而不支持 doub…
前言 并行就是让计算中相同或不同阶段的各个处理同时进行.目前有很多种实现并行的手段,如多核处理器,分布式系统等.本专题的文章将主要介绍使用 GPU 实现并行的方法.参考本专题文章前请务必搭建好 CUDA 开发平台,搭建方法可以参考上一篇文章. GPU 并行的优缺点 优点: 1. 显存具有更大的内存带宽 2. GPU 具有更大量的执行单元 3. 价格低廉 缺点: 1. 对于不能高度并行化的工作,能带来帮助不大. 2. 对于绝大多数显卡型号,CUDA 仅支持 float 类型而不支持 double…
CUDA C++编程手册(总论) CUDA C++ Programming Guide The programming guide to the CUDA model and interface. Changes from Version 10.0 Use CUDA C++ instead of CUDA C to clarify that CUDA C++ is a C++ language extension not a C language. General wording improve…
前言 CPU 的并行编程技术,也是高性能计算中的热点,也是今后要努力学习的方向.那么它和 GPU 并行编程有何区别呢? 本文将做出详细的对比,分析各自的特点,为将来深入学习 CPU 并行编程技术打下铺垫. 区别一:缓存管理方式的不同 GPU:缓存对程序员不透明,程序员可根据实际情况操纵大部分缓存 (也有一部分缓存是由硬件自行管理). CPU:缓存对程序员透明.应用程序员无法通过编程手段操纵缓存. 区别二:指令模型的不同 GPU:采用 SIMT - 单指令多线程模型,一条指令配备一组硬件,对应32…
这篇文章不是针对当前版本 Swift 3 的,而是对预计于 2018 年发布的 Swift 5 的一些特性的猜想.如果两年后我还记得这篇文章,可能会回来更新一波.在此之前,请当作一篇对现代语言并行编程特性的不太严谨科普文来看待. 2016-12-20 • 能工巧匠集 CPU 速度已经很多年没有大的突破了,硬件行业更多地将重点放在多核心技术上,而与之对应,软件中并行编程的概念也越来越重要.如何利用多核心 CPU,以及拥有密集计算单元的 GPU,来进行快速的处理和计算,是很多开发者十分感兴趣的事情.…
前言 CPU 的并行编程技术,也是高性能计算中的热点,也是今后要努力学习的方向.那么它和 GPU 并行编程有何区别呢? 本文将做出详细的对比,分析各自的特点,为将来深入学习 CPU 并行编程技术打下铺垫. 区别一:缓存管理方式的不同 GPU:缓存对程序员不透明,程序员可根据实际情况操纵大部分缓存 (也有一部分缓存是由硬件自行管理). CPU:缓存对程序员透明.应用程序员无法通过编程手段操纵缓存. 区别二:指令模型的不同 GPU:采用 SIMT - 单指令多线程模型,一条指令配备一组硬件,对应32…
转载自:http://blog.sina.com.cn/s/blog_a43b3cf2010157ph.html 编写利用GPU加速的并行程序有多种方法,归纳起来有三种: 1.      利用现有的GPU函数库. Nvidia 的CUDA工具箱中提高了免费的GPU加速的快速傅里叶变换(FFT).基本线性代数子程序(BLAST).图像与视频处理库(NPP).用户只要把源代码中CPU版本的快速傅里叶变换.快速傅里叶变换和图像与视频处理库替换成相应的GPU版,即可得到性能加速.除了Nvidia提供的函…
<CUDA并行程序设计:GPU编程指南> 基本信息 原书名:CUDA Programming:A Developer’s Guide to Parallel Computing with GPUs 作者: (美)Shane Cook 译者: 苏统华 李东 李松泽 魏通 丛书名: 高性能计算系列丛书 出版社:机械工业出版社 ISBN:9787111448617 上架时间:2014-1-10 出版日期:2014 年1月 开本:16开 页码:1 版次:1-1 所属分类:计算机 更多关于>>…