一.层次聚类 1.层次聚类的原理及分类 1)层次法(Hierarchicalmethods)先计算样本之间的距离.每次将距离最近的点合并到同一个类.然后,再计算类与类之间的距离,将距离最近的类合并为一个大类.不停的合并,直到合成了一个类.其中类与类的距离的计算方法有:最短距离法,最长距离法,中间距离法,类平均法等.比如最短距离法,将类与类的距离定义为类与类之间样本的最短距离. 层次聚类算法根据层次分解的顺序分为:自下底向上和自上向下,即凝聚的层次聚类算法和分裂的层次聚类算法(agglomerat…
发布时间:2018-10-31   技术:javascript+html5+canvas   概述 基于echarts的股票K线图展示,只需引用单个插件,通过简单配置,导入数据,即可实现炫酷复杂的K线图效果. 详细 代码下载:http://www.demodashi.com/demo/14295.html 一.概述 这是一个简单的股票K线图展示,利用echarts第三方进行配置,用户可以进行放大缩小查看K线图,还可进行拖拽. 二.演示效果 三.目录结构 其中dist文件夹是echart插件,jq…
在做一些常规应用的时候,我们往往需要确定条件的内容,以便在后台进行区分的进行精确查询,在移动端,由于受限于屏幕界面的情况,一般会对多个指定的条件进行模糊的搜索,而这个搜索的处理,也是和前者强类型的条件查询处理类似的处理过程,因此本篇随笔探讨两种不同查询在前端界面上的展示效果,以及后端基于.netCore的Web API端的基类进行的统一封装处理. 1.前端精确条件的查询处理 在基于Vue3+Typescript+ElementPlus的前端界面中,查询是很多界面需要拥有的功能,如下所示. 展开后…
1.项目背景 在做交通路线分析的时候,客户需要找出车辆的行车规律,我们将车辆每天的行车路线当做一个数据样本,总共有365天或是更多,从这些数据中通过聚类来获得行车路线规律统计分析. 我首先想到是K-means算法,不过它的算法思想是任选K个中心点,然后不停的迭代,在迭代的过程中需要不停的更新中心点.在我们着这个项目中,此方案不能解决,因为我们是通过编辑距离来计算两条路线的相似度.可以参考(1.交通聚类:编辑距离 (Levenshtein距离)Java实现) 这篇文章了解一下编辑距离.当我们第一步…
K-means是一种聚类算法: 这里运用k-means进行31个城市的分类 城市的数据保存在city.txt文件中,内容如下: BJ,2959.19,730.79,749.41,513.34,467.87,1141.82,478.42,457.64TianJin,2459.77,495.47,697.33,302.87,284.19,735.97,570.84,305.08HeBei,1495.63,515.90,362.37,285.32,272.95,540.58,364.91,188.63…
    笔者寄语:一般情况下离群值不应该直接删除,应该进行筛选,然后进行专门的离群值分析.笔者在这进行一下思考,在聚类基础之上的一种离群点检验. 基于聚类的离群点检测的步骤如下:数据标准化--聚类--求每一类每一指标的均值点--每一类每一指标生成一个矩阵--计算欧式距离--画图判断. 1.数据聚类 利用RFM客户价值模型,进行SOM(自组织映射神经网络模型),可以参考笔者的博客.一般的聚类方式,比如K-mean均值是比较常用的聚类方法(可见笔者的其他博客--R语言︱异常值检验.离群点分析.异常值…
博主sbit....对于高级数据结构深感无力,然后这些东西在OI竟然烂大街了,不搞就整个人都不好了呢. 于是我勇猛的跳进了这个大坑 ——sbit 区间K大的裸题,在线,无修改. 可以用归并树(\(O(nlog^3n)\)),也可用划分树(\(O(nlogn + mlogn)\)).果断划分树...(以后再来看归并树...再来看...来看..看..) 划分树是个什么东西呢?为什么可以做区间k大呢? 想想平衡树做k大时是如何搞的,其实内在原理是一样的. 划分树分两个步骤:建树与询问. 1. 建树 划…
链接 这树着实不好理解啊 讲解http://www.cnblogs.com/pony1993/archive/2012/07/17/2594544.html 对于找K值 右区间的确定不是太理解..先当模板贴着吧 #include <iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<stdlib.h> using namespace std; #def…
题目链接: https://leetcode.com/problems/reverse-nodes-in-k-group/?tab=Description   Problem :将一个有序list划分为k个组,并且每个组的元素逆置   链表操作 :递归算法  每次寻找到该组的尾部,然后进行逆置操作,返回头部,这样每次递归操作之后能够进行下一次的逆置操作. 链表操作画图比较形象!!!! 对于递归算法:找到共同点,找到程序退出点,注意特殊情况 本题中,共同点为每组为k个节点,并且每组进行的操作均为逆…
解题思路: 排序方法:多路归并排序 每次将n个list的头元素取出来,进行排序(堆排序),最小元素从堆中取出后,将其所在list的下一个元素 放入堆中,调整堆序列. 函数实现原型: void listnodesort(list<list<Node> >* listlistnode){} #include <iostream> #include <list> using namespace std; struct Node{ int value; Node *…
java项目使用的架构是ssm(Spring+SpringMVC+MyBatis). 一.后台代码一般分三层,Controller,Service,Dao. 1.Controller层是对前端或者接口的响应一个逻辑处理的层,这个层级一般调用的是Service层.这个层级调用java代码实现的. 2.Service层是对Controller的功能的响应一个逻辑处理的层,是对后台的有关联的逻辑的一个处理.这个层级一般调用的是Service层和Dao层,这个层级调用java代码实现的. 3.Dao层是…
KNN K-Means 1.分类算法 聚类算法 2.监督学习 非监督学习 3.数据类型:喂给它的数据集是带label的数据,已经是完全正确的数据 喂给它的数据集是无label的数据,是杂乱无章的,经过聚类后才变得有点顺序,先无序,后有序 4.训练过程:没有明显的前期训练过程,属于memory-based learning 有明显的前期训练过程 5.K的含义:来了一个样本x,要给它分类,即求出它的y,就从数据集中,在x附近找离它最近的K个数据点,这K个数据点,类别c占的个数最多,就把x的label…
九.基于内容的电影推荐 在基于内容的推荐系统中,我们得到的关于内容的信息越多,算法就会越复杂(设计的变量更多),不过推荐也会更准确,更合理. 本次基于评分,提供一个3阶段的MR解决方案来实现电影推荐. 1.找出各个电影的评分人总数 2.对于每个电影对A和B,找出所有同时对A和B评分的人. 3.找出每两个相关电影之间的关联.在这个阶段,我使用3个不同的关联度算法(pearson,cosine,jaccard)一般要根据具体的数据需求来选择关联度算法. 数据的输入格式: 第一阶段转化完之后: 经过M…
作者:韩信子@ShowMeAI 大数据技术 ◉ 技能提升系列:https://www.showmeai.tech/tutorials/84 行业名企应用系列:https://www.showmeai.tech/tutorials/63 本文地址:https://www.showmeai.tech/article-detail/296 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 背景 Sparkify 是一个音乐流媒体平台,用户可以获取部分免费音乐资源,也…
转载:http://www.cnblogs.com/windwithlife/archive/2013/03/03/2942157.html 一,选择一个合适的,Web开发环境: 我选择的是Eclipse for J2EE,当然大家可以选择MyEclipse我只是嫌最新版的MyEclipse Crack太烦,所以没用它.当年我也是最喜欢它的哟.如果你手头只有Eclipse for Java没关系,安装一个WTP就可以了. a.首先创建一个Dynamic Web Project : 在创建的第一页…
本文出处:http://www.cnblogs.com/wy123/p/6956464.html 本文仅模拟使用mysqldump和log-bin二进制日志进行简单测试,仅作为个人学习笔记,可能离实际应用还有很大差距,仅参考. 开启MySQL的bin-log二进制日志 模拟还原是需要mysqldump出来的文件和log-bin,因此需要开始log-bin二进制日志. mysql5.7.18在开启二进制日志的时候除了要设置log-bin的位置之外,另外需要设置一个server-id,MySQL之前…
基于云端的通用权限管理系统 SAAS服务 基于SAAS的权限管理 基于SAAS的单点登录SSO 基于.Net的SSO,单点登录系统,提供SAAS服务 基于Extjs 4.2 的企业信息管理系统 基于Extjs 4.x 的 通用 后台管理 基于Extjs 4 的 代码生成器 基于Extjs 4 的 SAAS服务 企业单点登录 企业系统监控 企业授权认证中心 打个标题广告,访问到该页面的朋友,请跳转至官网http://saas.chinacloudtech.com 了解产品 相关博文介绍请看: ht…
书籍源码:https://github.com/hzy46/Deep-Learning-21-Examples CNN的发展已经很多了,ImageNet引发的一系列方法,LeNet,GoogLeNet,VGGNet,ResNet每个方法都有很多版本的衍生,tensorflow中带有封装好各方法和网络的函数,只要喂食自己的训练集就可以完成自己的模型,感觉超方便!!!激动!!!因为虽然原理流程了解了,但是要写出来真的....好难,臣妾做不到啊~~~~~~~~ START~~~~ 1.数据准备 首先了…
http://blog.csdn.net/pipisorry/article/details/48901217 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Leskovec courses学习笔记之关联规则Apriori算法的改进:基于hash的方法:PCY算法, Multistage算法, Multihash算法 Apriori算法的改进 {All these extensions to A-Priori have the goal of minimiz…
聚类(1)——混合高斯模型 Gaussian Mixture Model http://blog.csdn.net/jwh_bupt/article/details/7663885 聚类系列: 聚类(序)----监督学习与无监督学习 聚类(1)----混合高斯模型 Gaussian Mixture Model 聚类(2)----层次聚类 Hierarchical Clustering 聚类(3)----谱聚类 Spectral Clustering -----------------------…
引自:http://www.cnblogs.com/taichu/p/5251332.html ########################### #说明: # 撰写本文的原因是,笔者在研究博文“http://python.jobbole.com/83563/”中发现 # 原内容有少量笔误,并且对入门学友缺少一些信息.于是笔者做了增补,主要有: # 1.查询并简述了涉及的大部分算法: # 2.添加了连接或资源供进一步查询: # 3.增加了一些lib库的基本操作及说明: # 4.增加了必须必要…
参考:http://www.52ml.net/16296.html 这个算法的优点就在于,它首先一步就能找到聚类中心,然后划分类别.而其他算法需要反复迭代才能找到中心聚类. 就是不知道代码该怎么写.......…
http://blog.csdn.net/pipisorry/article/details/48914067 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Leskovec courses学习笔记之关联规则Apriori算法的改进:非hash方法 - 大数据集下的频繁项集:挖掘随机采样算法.SON算法.Toivonen算法 Apriori算法的改进:大数据集下的频繁项集挖掘 1. 前面所讨论的频繁项都是在一次能处理的情况.如果数据量过大超过了主存的大小,这…
聚类分析就仅根据在数据中发现的描述对象及其关系的信息,将数据对象分组(簇).其目标是,组内的对象相互之间是相似的,而不同组中的对象是不同的.组内相似性越大,组间差别越大,聚类就越好. 先介绍下聚类的不同类型,通常有以下几种: (1)层次的与划分的:如果允许簇具有子簇,则我们得到一个层次聚类.层次聚类是嵌套簇的集族,组织成一棵树.划分聚类简单地将数据对象划分成不重叠的子集(簇),使得每个数据对象恰在一个子集中. (2)互斥的.重叠的与模糊的:互斥的指每个对象都指派到单个簇.重叠的或是模糊聚类用来反…
聚类分析就仅根据在数据中发现的描述对象及其关系的信息,将数据对象分组(簇).其目标是,组内的对象相互之间是相似的,而不同组中的对象是不同的.组内相似性越大,组间差别越大,聚类就越好. 先介绍下聚类的不同类型,通常有以下几种: (1)层次的与划分的:如果允许簇具有子簇,则我们得到一个层次聚类.层次聚类是嵌套簇的集族,组织成一棵树.划分聚类简单地将数据对象划分成不重叠的子集(簇),使得每个数据对象恰在一个子集中. (2)互斥的.重叠的与模糊的:互斥的指每个对象都指派到单个簇.重叠的或是模糊聚类用来反…
其实一直以来也没有准备在园子里发这样的文章,相对来说,算法改进放在园子里还是会稍稍显得格格不入.但是最近邮箱收到的几封邮件让我觉得有必要通过我的博客把过去做过的东西分享出去更给更多需要的人.从论文刊登后,陆陆续续收到本科生.研究生还有博士生的来信和短信微信等,表示了对论文的兴趣以及寻求算法的效果和实现细节,所以,我也就通过邮件或者短信微信来回信,但是有时候也会忘记回复. 另外一个原因也是时间久了,我对于论文以及改进的算法的记忆也越来越模糊,或者那天无意间把代码遗失在哪个角落,真的很难想象我还会全…
聚类是数据挖掘很重要的组成部分.而大多数聚类算法都需要事先确定分类数目K.而本文是在实际 情况下确定分类数目K的上限.进而对数据样本进行自动分类. 首先介绍下最大最小距离算法: 设样本集为X{x(1),x(2).......} 1.选取任意一个样本作为第一个聚类中心 如z(1)=x(1) 2.选取距离z(1)最远的样本点作为第二个聚类中心,设为z(2) 3.计算每个样本到z(1),z(2)的距离D(i,1),D(i,2);并选出其中最小的距离T(i)=min(D(i,1),D(i,2)) 4.在…
根据各行业特性,人们提出了多种聚类算法,简单分为:基于层次.划分.密度.图论.网格和模型的几大类. 其中,基于密度的聚类算法以DBSCAN最具有代表性.  场景 一 假设有如下图的一组数据, 生成数据的R代码如下 x1 <- seq(,pi,length.) y1 <- sin(x1) + ) x2 <- ,pi,length.) y2 <- cos(x2) + ) data <- data.frame(c(x1,x2),c(y1,y2)) names(data) <-…
一.算法概述 DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一个比较有代表性的基于密度的聚类算法.与划分和层次聚类方法不同,它将簇定义为密度相连的点的最大集合,能够把具有足够高密度的区域划分为簇,并可在噪声的空间数据库中发现任意形状的聚类(笔者认为是因为他不是基于距离的,基于距离的发现的是球状簇). 该算法利用基于密度的聚类的概念,即要求聚类空间中的一定区域内所包含对象(点或其他空间对象)的数目不小于某一给…
本文介绍无监督学习算法,无监督学习是在样本的标签未知的情况下,根据样本的内在规律对样本进行分类,常见的无监督学习就是聚类算法. 在监督学习中我们常根据模型的误差来衡量模型的好坏,通过优化损失函数来改善模型.而在聚类算法中是怎么来度量模型的好坏呢?聚类算法模型的性能度量大致有两类: 1)将模型结果与某个参考模型(或者称为外部指标)进行对比,私认为这种方法用的比较少,因为需要人为的去设定外部参考模型. 2)另一种是直接使用模型的内部属性,比如样本之间的距离(闵可夫斯基距离)来作为评判指标,这类称为内…