【HNOI 2019】校园旅行】的更多相关文章

[HNOI2019]校园旅行(bfs) 题面 洛谷 题解 首先考虑暴力做法怎么做. 把所有可行的二元组全部丢进队列里,每次两个点分别向两侧拓展一个同色点,然后更新可行的情况. 这样子的复杂度是\(O(m^2)\)的. 考虑如何优化边数,先说结论: 首先对于一个同色联通块,如果它是一个二分图,那么只需要保留一棵生成树就行了,否则随便找个点连一条自环. 对于连接不同色两个点的边,一定构成一个二分图,只需要保留一棵生成树就行了. 证明是这样子的: 首先我们把路径划分成若干个同色连续段,那么我们要做的就…
Loj #3057. 「HNOI2019」校园旅行 某学校的每个建筑都有一个独特的编号.一天你在校园里无聊,决定在校园内随意地漫步. 你已经在校园里呆过一段时间,对校园内每个建筑的编号非常熟悉,于是你情不自禁的把周围每个建筑的编号都记了下来--但其实你没有真的记下来,而是把每个建筑的编号除以 \(2\) 取余数得到 \(0\) 或 \(1\),作为该建筑的标记,多个建筑物的标记连在一起形成一个 \(01\) 串. 你对这个串很感兴趣,尤其是对于这个串是回文串的情况,于是你决定研究这个问题. 学校…
题目 [HNOI2019]校园旅行 做法 最朴素的做法就是点对扩展\(O(m^2)\) 发现\(n\)比较小,我们是否能从\(n\)下手减少边数呢?是肯定的 单独看一个颜色的联通块,如果是二分图,我们生产树和原来的效果相同 如果不是二分图,是会有一个环的,在树上随便圈一个自环和原来的效果相同 而看不同颜色的连边,一定是二分图,再生产树就好了 总边数是\(n\)级的,总复杂度\(O(n^2)\) Code #include<bits/stdc++.h> #include<queue>…
LOJ#3054. 「HNOI 2019」鱼 https://loj.ac/problem/3054 题意 平面上有n个点,问能组成几个六个点的鱼.(n<=1000) 分析 鱼题,劲啊. 容易想到先枚举这个\(D\),然后极角序排一下,我们枚举\(A\),对\(B,E,F\)分别统计. 枚举\(A\)的过程中用一个指针维护\(E,F\)的范围,对答案贡献是一个\(\sum\binom{x}{2}\)的形式,容易维护. 然后现在要求\(B\)的方案数,可以发现符合条件的\(BC\)一定满足线段\(…
HNOI 2019 多边形 题意 小 R 与小 W 在玩游戏. 他们有一个边数为\(n\)的凸多边形,其顶点沿逆时针方向标号依次为\(1,2,3...n\).最开始凸多边形中有\(n\)条线段,即多边形的\(n\)条边.这里我们用一个有序数对 \((a,b)\)(其中\(a<b\))来表示一条端点分别为顶点\(a,b\)的线段. 在游戏开始之前,小 W 会进行一些操作.每次操作时,他会选中多边形的两个互异顶点,给它们之间连一条线段,并且所连的线段不会与已存的线段重合.相交(只拥有一个公共端点不算…
Problem Description 某学校的每个建筑都有一个独特的编号.一天你在校园里无聊,决定在校园内随意地漫步. 你已经在校园里呆过一段时间,对校园内每个建筑的编号非常熟悉,于是你情不自禁的把周围每个建筑的编号都记了下来--但其实你没有真的记下来,而是把每个建筑的编号除以 \(2\) 取余数得到 \(0\) 或 \(1\),作为该建筑的标记,多个建筑物的标记连在一起形成一个 \(01\) 串. 你对这个串很感兴趣,尤其是对于这个串是回文串的情况,于是你决定研究这个问题. 学校可以看成一张…
30分的O(m^2)做法应该比较容易想到:令f[i][j]表示i->j是否有解,然后把每个路径点数不超过2的有解状态(u,v)加入队列,然后弹出队列时,两点分别向两边搜索边,发现颜色一样时,再修改答案,加入队列即可. 100分是挺难想的,是个思维题,可以把边分成连接同色和异色两种.发现走过的路径一定是若干同色连通块拼接而成,除了中间的连通块外,其余长度均相等.对于长度,如果短,可以反复走把长度走到相等,重点是奇偶性要相同.所以,我们能够联想和二分图有关的东西.异色连通块,很显然是二分图,于是我们…
非常妙的一道思博题啊,不愧是myy出的题 首先我们考虑一个暴力DP,直接开一个数组\(f_{i,j}\)表示\(i\to j\)的路径能否构成回文串 考虑直接拿一个队列来转移,队列里存的都是\(f_{i,j}=1\)的点对,然后每次枚举两边的边更新答案并扩展即可 但是这样的复杂度是\(O(m^2)\)的,不够优秀.我们发现其实这种方法的复杂度瓶颈在于有很多无用边导致我们浪费了复杂度,因此我们考虑删去一些边 我们首先在原图上把所有同色点间的边连起来,由于每个点可以经过任意次,因此我们只需要考虑奇偶…
一道清真的数论题 LOJ #3058 Luogu P5293 题解 考虑$ n=1$的时候怎么做 设$ s$为转移的方案数 设答案多项式为$\sum\limits_{i=0}^L (sx)^i\binom{L}{i}=(sx+1)^L$ 答案相当于这个多项式模$ k$的各项系数的和 发现这和LJJ学二项式定理几乎一模一样 我上一题的题解 然而直接搞是$ k^2$的,无法直接通过本题 以下都用$ w$表示$ k$次单位根 设$ F_i$为次数模$ k$为$ i$的项的系数和 单位根反演一下得到$F…
原文链接www.cnblogs.com/zhouzhendong/p/UOJ465.html 前言 tmd并查集写挂,调到自闭. cly和我写挂了同一个地方. 一下救了两个人感觉挺开心. 题解 首先直接写 bfs/记忆化dfs 可以容易地得到一个 $O(m^2)$ ,或者 $O(nm)$ 的做法.常数不大的情况下应该可以得到 70 分. 注意到本题中不要求简单路径,同一条边可以经过多次. 这意味着,我们可以在有边相连的两个同色节点之间来回走. 那么,假设两个点在同一个同色连通块,那么从其中一个点…