Bias and Variance 偏置和方差】的更多相关文章

偏置和方差 参考资料:http://scott.fortmann-roe.com/docs/BiasVariance.html http://www.cnblogs.com/kemaswill/ Bias-variance 分解是机器学习中一种重要的分析技术.给定学习目标和训练集规模,它可以把一种学习算法的期望误差分解为三个非负项的和,即本真噪音.bias和 variance. 本真噪音是任何学习算法在该学习目标上的期望误差的下界:( 任何方法都克服不了的误差) bias 度量了某种学习算法的平…
个人感觉理解误差.偏置.方差的一个好的解释,感谢分享:https://baijiahao.baidu.com/s?id=1601092478839269810&wfr=spider&for=pc 该作者写的我感觉已经很容易懂了. Error:反映的模型的准确度.误差越大,模型越不准确. Bias:反映的模型的拟合度.神经网络中往往加上一个bias,来增加其拟合效果 Variance:反映的模型的稳定性.数学上都学过,方差越大,模型越不稳定,反之,越稳定. 损失函数(Loss Functio…
有监督学习中,预测误差的来源主要有两部分,分别为 bias  与 variance,模型的性能取决于 bias 与 variance 的 tradeoff ,理解 bias 与 variance 有助于我们诊断模型的错误,避免 over-fitting 或者 under-fitting. 在统计与机器学习领域权衡 Bias  与 Variance 是一项重要的任务,因为他可以使得用有限训练数据训练得到的模型更好的范化到更多的数据集上,监督学习中的误差来源主要为 Bias 与 Variance,接…
关于偏差.方差以及学习曲线为代表的诊断法: 在评估假设函数时,我们习惯将整个样本按照6:2:2的比例分割:60%训练集training set.20%交叉验证集cross validation set.20%测试集test set,分别用于拟合假设函数.模型选择和预测. 模型选择的方法为: 1. 使用训练集训练出 10 个模型 2. 用 10 个模型分别对交叉验证集计算得出交叉验证误差(代价函数的值) 3. 选取代价函数值最小的模型 4. 用步骤 3 中选出的模型对测试集计算得出推广误差(代价函…
参考资料: https://en.wikipedia.org/wiki/Inductive_bias http://blog.sina.com.cn/s/blog_616684a90100emkd.html Machine Learning. Tom M. Mitchell 下面我认为比较关键的内容都用红色字体标注: mokuram (mokuram) 于Tue Jan 4 05:22:24 2005)提到:就是学习器在学习的时候带有的偏见.(这个说法不很准确)比如决策数分类器,很多决策数都采用…
校招在即,准备准备一些面试可能会用到的东西吧.希望这次面试不会被挂. 基本概念 说到机器学习模型的误差,主要就是bias和variance. Bias:如果一个模型的训练错误大,然后验证错误和训练错误都很大,那么这个模型就是高bias.可能是因为欠拟合,也可能是因为模型是弱分类器. Variance:模型的训练错误小,但是验证错误远大于训练错误,那么这个模型就是高Variance,或者说它是过拟合. 这个图中,左上角是低偏差低方差的,可以看到所有的预测值,都会落在靶心,完美模型: 右上角是高偏差…
以下内容参考 cousera 吴恩达 机器学习课程 1. Bias 和 Variance 的定义 Bias and Variance 对于改进算法具有很大的帮助作用,在bias和Variance的指引之下,我们可以有方向性的对算法进行改进. 模型较简单时,可能导致Bias,相反模型较为复杂的时候,容易导致high Variance. 如下图所示,随着模型复杂度的增加,训练数据集上的误差将会减小,而交叉验证集上的误差是先减小后增大.所以根据在训练集和交叉验证集上的误差大小就可以判断模型是除了bia…
假设我们已经训练得到 一个模型,那么我们怎么直观判断这个 模型的 bias 和 variance? 直观方法: 如果模型的 训练错误 比较大,并且 验证错误 和 训练错误 差不多一样,都比较大,我们就认为这个模型 是 高bias 的,或者说 它是 underfit . 如果模型的 训练错误 比较小,但是 验证错误比较大 远大于 训练错误,我们就认为这个 模型 是 高variance,或者说它是 overfit. 直观解释: 如果一个模型是高 bias 的(underfitting),那么可以认为…
有监督学习中,预测误差的来源主要有两部分,分别为 bias 与 variance,模型的性能取决于 bias 与 variance 的 tradeoff ,理解 bias 与 variance 有助于我们诊断模型的错误,避免 over-fitting 或者 under-fitting. 原文在这里: https://www.cnblogs.com/ooon/p/5711516.html 博主大概翻译自英文: http://scott.fortmann-roe.com/docs/BiasVaria…
1.Bias vs. Variance是什么概念? 图形上的理解:https://www.zhihu.com/question/27068705          http://blog.csdn.net/huruzun/article/details/41457433 直观上的定义: Error due to Bias:真实值与预测值之间的差异.(low bias:打的准) Error due to Variance : 在给定模型数据上预测的变化性,你可以重复整个模型构建过程很多次, var…
怎么区分哪些措施对我们有用呢?----首先根据learning curve来判断你的问题是high bias or variance 当你的算法是high bias问题时,如果你get more training examples是没有用处的,这时我们就不要浪费时间在get5 more training examples上面了. 对如何选择neural network architecture(选择几层hidden layer以及神经网络的大小)的建议 我们可以选择相对于来说"small&quo…
画learning curves可以用来检查我们的学习算法运行是否正常或者用来改进我们的算法,我们经常使用learning cruves来判断我们的算法是否存在bias problem/variance problem或者两者皆有. learning curves--m(trainning size与error的函数) 上图是Jtrain(θ)与Jcv(θ)与training set size m的关系图,假设我们使用二次项来拟合我们的trainning data. 当trainning dat…
Error = Bias^2 + Variance+Noise 误差的原因: 1.Bias反映的是模型在样本上的输出与真实值之间的误差,即模型本身的精准度,即算法本身的拟合能力. 2.Variance反映的是模型每一次输出结果与模型输出期望之间的误差,即模型的稳定性.反应预测的波动情况. 3.噪声. 为了帮助理解,搬运知乎上的图.bias表示偏离中心的程度,variance表示结果的波动程度.在实际的预测当中,我们希望模型的数据不但是low bias,而且还是low variance,但是两者之…
当你运行一个学习算法时,如果这个算法的表现不理想,那么多半是出现两种情况:要么是偏差比较大,要么是方差比较大.换句话说,出现的情况要么是欠拟合,要么是过拟合问题.那么这两种情况,哪个和偏差有关,哪个和方差有关,或者是不是和两个都有关?搞清楚这一点非常重要,因为能判断出现的情况是这两种情况中的哪一种.其实是一个很有效的指示器,指引着可以改进算法的最有效的方法和途径,高偏差和高方差的问题基本上来说是欠拟合和过拟合的问题. 我们通常会通过将训练集和交叉验证集的代价函数误差与多项式的次数绘制在同一张图表…
当我们运行一个学习算法时,如果这个算法的表现不理想,那么有两种原因导致:要么偏差比较大.要么方差比较大.换句话说,要么是欠拟合.要么是过拟合.那么这两种情况,哪个和偏差有关.哪个和方差有关,或者是不是和两个都有关,搞清楚这点很重要.能判断出现的情况是这两种中的哪一种,是一个很有效的指示器,指引着可以改进算法的最有效的方法和途径. 下面深入地探讨一下有关偏差和方差的问题,并且能弄清楚怎样评价一个学习算法.能够判断一个算法是偏差还是方差有问题.因为这个问题对于弄清如何改进学习算法的效果非常重要. 如…
Linear regression with regularization 当我们的λ很大时,hθ(x)≍θ0,是一条直线,会出现underfit:当我们的λ很小时(=0时),即相当于没有做regularization,会出现overfit;只有当我们的λ取intermediate值时,才会刚刚好.那么我们怎么自动来选择这个λ的值呢? 正则化时的Jtrain(θ),Jcv(θ),Jtest(θ)的表达式 正则化时的Jtrain(θ),Jcv(θ),Jtest(θ)的表达式不带有regulariz…
我们的函数是有high bias problem(underfitting problem)还是 high variance problem(overfitting problem),区分它们很得要,因为有助于我们提升我们的预测准确性. bias problem(underfitting problem)/variance problem(overfitting problem) Training error & validation/test error 随着d的不同而变化的函数 从图中可以看…
http://blog.csdn.net/pipisorry/article/details/50638749 偏置-方差分解(Bias-Variance Decomposition) 偏置-方差分解(Bias-Variance Decomposition)是统计学派看待模型复杂度的观点.Bias-variance 分解是机器学习中一种重要的分析技术.给定学习目标和训练集规模,它可以把一种学习算法的期望误差分解为三个非负项的和,即本真噪音noise.bias和 variance. noise 本…
1. 训练.验证.测试集 对于一个需要解决的问题的样本数据,在建立模型的过程中,我们会将问题的data划分为以下几个部分: 训练集(train set):用训练集对算法或模型进行训练过程: 验证集(development set):利用验证集或者又称为简单交叉验证集(hold-out cross validation set)进行交叉验证,选择出最好的模型: 测试集(test set):最后利用测试集对模型进行测试,获取模型运行的无偏估计. 小数据时代 在小数据量的时代,如:100.1000.1…
偏差(bias) 偏差度量了学习算法的期望预测与真实结果的偏离程序, 即 刻画了学习算法本身的拟合能力 . 方差(variance) 方差度量了同样大小的训练集的变动所导致的学习性能的变化, 即 刻画了数据扰动所造成的影响 .…
犀利的开头 在机器学习中,我们用训练数据集去训练(学习)一个model(模型),通常的做法是定义一个Loss function(误差函数),通过将这个Loss(或者叫error)的最小化过程,来提高模型的性能(performance).然而我们学习一个模型的目的是为了解决实际的问题(或者说是训练数据集这个领域(field)中的一般化问题),单纯地将训练数据集的loss最小化,并不能保证在解决更一般的问题时模型仍然是最优,甚至不能保证模型是可用的.这个训练数据集的loss与一般化的数据集的loss…
Error | 误差 Bias | 偏差 – 衡量准确性 Variance | 方差 – 衡量稳定性 首先我们通常在实际操作中会直接用错误率或者与之对应的准确率来衡量一个模型的好坏,但是更加准确的做法是误差衡量时综合考虑偏差和方差的共同作用. 所谓偏差Bias反映的是模型在样本上的输出与真实值之间的误差,即模型本身的精准度.Variance反映的是模型每一次输出结果与模型输出期望值之间的误差,即模型的稳定性. 举个例子,对于一个二分类问题,比如测试图片是不是猫,是猫的话就是1,不是猫就是2. 现…
准: bias描述的是根据样本拟合出的模型的输出预测结果的期望与样本真实结果的差距,简单讲,就是在样本上拟合的好不好.要想在bias上表现好,low bias,就得复杂化模型,增加模型的参数,但这样容易过拟合 (overfitting),过拟合对应上图是high variance,点很分散.low bias对应就是点都打在靶心附近,所以瞄的是准的,但手不一定稳. 确: varience描述的是样本上训练出来的模型在测试集上的表现,要想在variance上表现好,low varience,就要简化…
1.首先 Error = Bias + Variance  Error反映的是整个模型的准确度, Bias反映的是模型在样本上的输出与真实值之间的误差,即模型本身的精准度, Variance反映的是模型每一次输出结果与模型输出期望之间的误差,即模型的稳定性. 2.Bias与Variance往往是不能兼得的  在一个实际系统中,Bias与Variance往往是不能兼得的.如果要降低模型的Bias,就一定程度上会提高模型的Variance,反之亦然. 造成这种现象的根本原因是,我们总是希望试图用有限…
本文地址为:http://www.cnblogs.com/kemaswill/,作者联系方式为kemaswill@163.com,转载请注明出处. 机器学习的目标是学得一个泛化能力比较好的模型.所谓泛化能力,是指根据训练数据训练出来的模型在新的数据上的性能.这就牵扯到机器学习中两个非常重要的概念:欠拟合和过拟合.如果一个模型在训练数据上表现非常好,但是在新数据集上性能很差,就是过拟合,反之,如果在训练数据集和新数据集上表现都很差,就是欠拟合,如下图所示 其中蓝叉点表示训练数据,蓝色的线表示学到的…
首先 Error = Bias + Variance Error反映的是整个模型的准确度,Bias反映的是模型在样本上的输出与真实值之间的误差,即模型本身的精准度,Variance反映的是模型每一次输出结果与模型输出期望之间的误差,即模型的稳定性. 举一个例子,一次打靶实验,目标是为了打到10环,但是实际上只打到了7环,那么这里面的Error就是3.具体分析打到7环的原因,可能有两方面:一是瞄准出了问题,比如实际上射击瞄准的是9环而不是10环:二是枪本身的稳定性有问题,虽然瞄准的是9环,但是只打…
1.bagging减少variance Bagging对样本重采样,对每一重采样得到的子样本集训练一个模型,最后取平均.由于子样本集的相似性以及使用的是同种模型,因此各模型有近似相等的bias和variance(事实上,各模型的分布也近似相同,但不独立),所以bagging后的bias和单个子模型的接近,一般来说不能显著降低bias. 若各模型独立,则 若各模型完全相等,则 此时不会降低variance.bagging方法得到的各子模型是有一定相关性的,属于上面两个极端状况的中间态,因此可以一定…
A more complex model does not always lead to better performance on testing data. Because error due to both of 'bias' and 'variance'. From training data, we can find \(f^*\), \(f^*\) is an enstimator of \(\hat{f}\) bias (偏差) 和 variance (方差) 的直观表示: 数学公…
源码:https://github.com/cheesezhe/Coursera-Machine-Learning-Exercise/tree/master/ex5 Introduction: In this exercise, you will implement regularized linear regression and use it to study models with different bias-variance properties. 1. Regularized Lin…
文章转自公众号[机器学习炼丹术],关注回复"炼丹"即可获得海量免费学习资料哦! 目录 1 随机森林 2 bagging 3 神秘的63.2% 4 随机森林 vs bagging 5 投票策略 6 随机森林的特点 6.1 优点 6.2 bias 与 variance 6.3 随机森林降低偏差证明 为什么现在还要学习随机森林? 随机森林中仍有两个未解之谜(对我来说).随机森林采用的bagging思想中怎么得到的62.3% 以及 随机森林和bagging的方法是否有区别. 随机森林(Rand…