hdu 5955 Guessing the Dice Roll [AC自动机+高斯消元] 题意:给出 n≤10 个长为 L≤10 的串,每次丢一个骰子,先出现的串赢,问获胜概率. 题解:裸的AC自动机,求匹配到终止结点的概率,用 高斯消元?一开始不知道怎么建方程组,直接举个例子吧: Input: 1 2 2 1 1 2 1 图解: x0原本概率就是1,然后还要加上其他结点走向它的概率,,这样最后算下来是大于1的,现在还是觉得怪怪的... #include <cstdio> #include &…
HDU 5955 Guessing the Dice Roll 2016 ACM/ICPC 亚洲区沈阳站 题意 有\(N\le 10\)个人,每个猜一个长度为\(L \le 10\)的由\(1-6\)构成的序列,保证序列两两不同. 不断地掷骰子,直到后缀与某人的序列匹配,则对应的人获胜. 求每个人获胜的概率. 思路 显然,涉及的序列最多100个,用ac自动机构出这些状态,计算状态之间的转移概率. 记增量矩阵为\(A\)(即终状态不再计算转移到自身的概率),答案为\(b\),初始序列为\(x\),…
初始有一个空串s,从前n个大写字母中不断随机取出一个字母添加到s的结尾,出现模式串t时停止,求停止时s的长度期望. 这道题解法不唯一,比较无脑的方法是对模式串t建一个单串AC自动机,设u为自动机上的一个结点,dp[u]为从该结点出发走到终结状态时的期望步数,则dp[u]=∑(1+dp[v])/n,v为u的后继状态.特别地,终结状态的dp值为0. 这样一来,就可以列出线性方程组进行高斯消元了.由于答案非常大,用double会损失精度,所以改成longlong. 由于有除法的存在,为了防止出现除不开…
1444: [Jsoi2009]有趣的游戏 题意:每种字母出现概率\(p_i\),有一些长度len的字符串,求他们出现的概率 套路DP的话,\(f[i][j]\) i个字符走到节点j的概率,建出转移矩阵来矩乘几十次可以认为是无穷个字符,就得到概率了 但我们发现Trie图也是图啊,直接高斯消元就好了,\(f[i]\)表示走到节点i的期望次数 注意\(f[0]\)需要+1 #include <iostream> #include <cstdio> #include <cstrin…
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=2262 Where is the canteen Time Limit: 10000/5000 MS (Java/Others)Memory Limit: 65536/32768 K (Java/Others) 问题描述 After a long drastic struggle with himself, LL decide to go for some snack at last. But wh…
题意有 N≤10 个人,每个猜一个长度为L≤10的由1−6构成的序列,保证序列两两不同.不断地掷骰子,直到后缀与某人的序列匹配,则对应的人获胜.求每个人获胜的概率. 思路:建立trie图,跑高斯消元.高斯消元每个点的意义是:第i行第j列的值为x 有概率x从点j转移过来 ; ; ; int ch[MAXNODE][SIGMA_SIZE]; int f[MAXNODE]; int sz; void insert(int* P, int len, int v) { ; ; i < len; i++)…
XOR Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 2302    Accepted Submission(s): 783 Problem Description XOR is a kind of bit operator, we define that as follow: for two binary base number A…
ccpc网赛卡住的一道题 蓝书上的原题 但是当时没看过蓝书 今天又找出来看看 其实也不是特别懂 但比以前是了解了一点了 主要还是要想到构造异或方程组 异或方程组的消元只需要xor就好搞了 数学真的是硬伤啊…… (链接:蓝书161页详细讲解 我也在看…… #include<cstdio> #include<iostream> #include<algorithm> #include<cmath> #include<cstring> #include…
先从阿里机器学习算法岗网络笔试题说起:甲乙两人进行一个猜硬币的游戏.每个人有一个目标序列,由裁判来抛硬币.谁先得到裁判抛出的一串连续结果,谁赢. 甲的目标序列是正正正,乙的目标序列是反正正.那么如果裁判抛出了正正反正反正正....抛到第7个结果时乙胜,因为最后三个序列是"反正正",而前面不存在甲的"正正正"序列. 问:甲的目标序列是????,乙的目标序列是????,求两人各自获胜的概率. 先说例子,正正正,反正正的概率.显然是1/8和7/8.  甲获胜的情况只有一种…
含高斯消元模板 2016沈阳区域赛http://acm.hdu.edu.cn/showproblem.php?pid=5955 Guessing the Dice Roll Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 1632    Accepted Submission(s): 480 Problem Description The…