本課主題 Master 资源调度的源码鉴赏 [引言部份:你希望读者看完这篇博客后有那些启发.学到什么样的知识点] 更新中...... 资源调度管理 任务调度与资源是通过 DAGScheduler.TaskScheduler.SchedulerBackend 等进行的作业调度 资源调度是指应用程序如何获得资源 任务调度是在资源调度的基础上进行的,没有资源调度那么任务调度就成为了无源之水无本之木 Master 资源调度的源码鉴赏 因為 Master 負責資源管理和調度,所以資源調度方法 schedu…
本课主题 Master 资源调度的源码鉴赏 资源调度管理 任务调度与资源是通过 DAGScheduler.TaskScheduler.SchedulerBackend 等进行的作业调度 资源调度是指应用程序如何获得资源 任务调度是在资源调度的基础上进行的,没有资源调度那么任务调度就成为了无源之水无本之木 Master 资源调度的源码鉴赏 因为 Master 负责资源管理和调度,所以资源调度方法 scheduer 位于 Master.scala 这个类中,当注册程序或者资源发送改变的时候都会导致…
欢迎转载,转载请注明出处,徽沪一郎. 概要 本文主要讲述在standalone cluster部署模式下,Spark Application在整个运行期间,资源(主要是cpu core和内存)的申请与释放. 构成Standalone cluster部署模式的四大组成部件如下图所示,分别为Master, worker, executor和driver,它们各自运行于独立的JVM进程. 从资源管理的角度来说 Master  掌管整个cluster的资源,主要是指cpu core和memory,但Ma…
spark可以运行在standalone,yarn,mesos等多种模式下,当前我们用的最普遍的是yarn模式,在yarn模式下又分为client和cluster.本文接下来将分析yarn cluster下任务提交的过程.也就是回答,在yarn cluster模式下,任务是怎么提交的问题.在yarn cluster模式下,spark任务提交涉及四个角色(client, application, driver以及executor)之间的交互.接下来,将详细分析这四个角色在任务提交过程中都做了那些事…
本期内容 : JobScheduler内幕实现 JobScheduler深度思考 JobScheduler 是整个Spark Streaming调度的核心,需要设置多线程,一条用于接收数据不断的循环,另外一条是处理线程,同时需要把调度与执行分离开. 一. 作业流程源码 : 首先只要定义了BatchDuration后就规定了按照什么样的频率生成具体的Job ,也就是Job生成的频率: 按照一定的频率操作ForeachRDD : 我们设置每隔5秒钟都会生成一个Spark 的Job ,Job其实其内部…
ByteBuf内存分配和释放由具体实现负责,抽象类型只定义的内存分配和释放的时机. 内存分配分两个阶段: 第一阶段,初始化时分配内存.第二阶段: 内存不够用时分配新的内存.ByteBuf抽象层没有定义第一阶段的行为,但定义了第二阶段的方法: public abstract ByteBuf capacity(int newCapacity) 这个方法负责分配一个长度为newCapacity的新内存. 内存释放的抽象实现在AbstractReferenceCountedByteBuf中实现,这个类实…
Spark基本工作流程及YARN cluster模式原理 转载请注明出处:http://www.cnblogs.com/BYRans/ Spark基本工作流程 相关术语解释 Spark应用程序相关的几个术语: Worker:集群中任何可以运行Application代码的节点,类似于YARN中的NodeManager节点.在Spark on Yarn模式中指的就是NodeManager节点: Executor:Application运行在Worker 节点上的一个进程,该进程负责运行Task,并且…
本课程主要讲解目前大数据领域最热门.最火爆.最有前景的技术——Spark.在本课程中,会从浅入深,基于大量案例实战,深度剖析和讲解Spark,并且会包含完全从企业真实复杂业务需求中抽取出的案例实战.课程会涵盖Scala编程详解.Spark核心编程.Spark SQL和Spark Streaming.Spark内核以及源码剖析.性能调优.企业级案例实战等部分.完全从零起步,让学员可以一站式精通Spark企业级大数据开发,提升自己的职场竞争力,实现更好的升职或者跳槽,或者从j2ee等传统软件开发工程…
  第1章 Spark 整体概述 1.1 整体概念   Apache Spark 是一个开源的通用集群计算系统,它提供了 High-level 编程 API,支持 Scala.Java 和 Python 三种编程语言.Spark 内核使用 Scala 语言编写,通过基于 Scala 的函数式编程特性,在不同的计算层面进行抽象,代码设计非常优秀. 1.2 RDD 抽象   RDD(Resilient Distributed Datasets),弹性分布式数据集,它是对分布式数据集的一种内存抽象,通…
第一章.spark源码分析之RDD四种依赖关系 一.RDD四种依赖关系 RDD四种依赖关系,分别是 ShuffleDependency.PrunDependency.RangeDependency和OneToOneDependency四种依赖关系.如下图所示:org.apache.spark.Dependency有两个一级子类,分别是 ShuffleDependency 和 NarrowDependency.其中,NarrowDependency 是一个抽象类,它有三个实现类,分别是OneToO…